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Abstract 

The concept of cognitive reserve (CR) originated from discrepancies between the degree of 

brain pathology and the severity of clinical manifestations. CR has been characterized 

through CR proxies, such as education and occupation complexity; however, such 

approaches have inherent limitations. Although several methods have been developed to 

overcome these limitations, they fail to reflect the entire Alzheimer’s disease (AD) pathology. 

Meanwhile, graph theory analysis, one of most powerful and flexible approaches, have 

established remarkable network properties of the brain. The functional and structural brain 

networks are damaged in neurodegenerative diseases. Therefore, network analysis has 

been applied to clarify the characteristics of the disease or give insight. Here, using 

multimodal neuroimaging, we propose an intuitive model to estimate CR based on its original 

definition, and explore the neural substrates of CR from the perspective of networks and 

functional connectivity. A total of 87 subjects (21 AD, 32 mild cognitive impairment, and 34 

normal aging) underwent tau and amyloid PET, 3D T1-weighted MR, and resting-state fMRI. 

We hypothesized CR as a residual of actual cognitive performance and expected 

performance to be related to quantitative factors, such as AD pathology, demographics, and 

a genetic factor. Then, we correlated this marker using education and occupation complexity 

as conventional CR proxies. We validated this marker by testing whether it would modulate 

the effect of brain pathology on memory function. To examine the neural substrates 

associated with CR, we performed graph analysis to investigate the association between the 

CR marker and network measures at different granularities in total subjects, AD spectrum 

and normal aging, respectively. The CR marker from our model was well associated with 

education and occupation complexity. More directly, the CR marker was revealed to modify 

the relationship between brain pathology and memory function among AD spectrum. The CR 

marker was correlated with the global efficiency of the entire network, nodal clustering 
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coefficient, and local efficiency of the right middle-temporal pole. In connectivity analysis, 

one cluster of edges centered on right middle-temporal pole was significantly correlated with 

the CR marker. In subgroup analysis, the network measures of right middle-temporal pole 

still correlated with the CR marker among AD spectrum. However, right precentral gyrus was 

revealed to be associated with the CR marker in normal aging. This study demonstrates that 

our intuitive model using multimodal neuroimaging and network perspective adequately and 

comprehensively captures CR. From a network perspective, CR is associated with the 

capacity to process information efficiently in the brain. The right middle-temporal pole was 

revealed to be a pivotal neural substrate of CR in AD spectrum. These findings foster 

understanding of AD and will be useful to help identify individuals with vulnerability or 

resistance to AD pathology, and characterize patients for intervention or drug trials. 

 

Keywords: Cognitive reserve, multimodal neuroimaging, brain network, Alzheimer’s disease 
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1. Introduction  

The concept of cognitive reserve (CR) derives from observations of discrepancies between 

the extent of brain pathology and the severity of clinical manifestations (Katzman et al., 

1988). CR has been proposed as a protective factor that modifies the effect of brain 

pathology on cognitive performance (Stern, 2002). Researchers have defined CR as the 

ability to optimize cognitive performance through differential recruitment of brain structures 

or networks (Stern, 2002). Two mechanisms have been suggested to contribute to CR: 

neural reserve and neural compensation (Stern, 2012; Stern et al., 2005). Neural reserve 

refers to the differential activation of pre-existing less vulnerable resources, while neural 

compensation denotes the recruitment of compensatory networks when pathology afflicts the 

primary task-related network.  

The concept of CR has been tested primarily in patients with Alzheimer’s disease (AD). 

Epidemiological studies suggest that cognitive exposures through lifespan, including 

education (Hall et al., 2007; Meng and D'Arcy, 2012), occupation (Adam et al., 2013; 

Richards and Sacker, 2003), and leisure activities (Fabrigoule et al., 1995; Scarmeas et al., 

2001) can delay the onset of cognitive impairment by enhancing CR. Therefore, these 

features have been widely accepted as CR proxies. Meanwhile, recent advances in imaging 

techniques permit visualization of the level of AD pathology, such as the accumulation of Aβ 

plaques and tau tangles, and neuronal degeneration; thus, these characteristics have been 

introduced as CR correlates (Braak et al., 1998; Serrano-Pozo et al., 2011). Greater CR is 

associated with lower perfusion (Stern et al., 1992), hypometabolism (Ewers et al., 2013), 

and more cortical atrophy (Liu et al., 2012) in parietotemporal areas, as well as with more 

tau (Hoenig et al., 2017) and Aβ (Kemppainen et al., 2008) aggregation at the same level of 

clinical severity, indicating that patients with higher CR tolerate more AD pathology before 
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cognitive impairments appear. 

However, proxies such as education, occupation or leisure activities have limitations in that 

they are not accurate or dynamic, and the same value does not assure the same degree of 

experience across individuals. These proxies are also highly correlated among themselves 

(Zahodne et al., 2013). To overcome these limitations, several models have been suggested, 

including a latent variable model in which education was already assigned to the 

demographic factor (Reed et al., 2010), a model using a w-score method (van Loenhoud et 

al., 2017), and a residual model (Habeck et al., 2016). Although these correspond to the 

original definition of CR, namely the discrepancy between actually measured and estimated 

cognitive performance from the pathologic burden, they fail to reflect the overall AD 

pathology (not only gray-matter atrophy but also Aβ and tau) in the model.  

Meanwhile, graph theoretic approach has identified remarkable network properties of the 

brain, such as small-worldness (Watts and Strogatz, 1998), hierarchical modularity (Meunier 

et al., 2009) and hub organization (van den Heuvel and Sporns, 2013). The functional brain 

networks are related to predict inter-individual variability and intelligence (Langer et al., 2012; 

Mueller et al., 2013). These brain networks are revealed to be damaged in psychiatric or 

neurodegenerative diseases (Filippi et al., 2017; Liu et al., 2008). Therefore, a network 

perspective of graph theory has been utilized to clarify the characteristics of the disease or 

give insight into it. In respect to CR, even though CR is known to be associated with the 

ability to optimize or recruit brain networks differentially, few studies have focused on CR 

from the network perspective.  

In the present study, we propose an intuitive model to conceptualize CR based on its original 

definition, using multimodal imaging including tau and amyloid PET and T1 images. Then, 

we validate our CR marker by comparison with conventional CR proxies and test whether it 

modulates the relationship between brain pathology and memory function. Finally, we 
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investigate how network topological characteristics across different granularities correlate 

with CR, to reveal the core substrates of CR.  

 

2. Materials and Methods  

2. 1. Study population 

Eighty-seven subjects (21 AD, 32 amnestic MCI, 34 normal aging) were recruited at the 

memory disorder clinic in the Department of Neurology at the Asan Medical Center (AMC) 

and the Samsung Medical Center (SMC) in Seoul, South Korea. Each participant received 

MRI, resting-state fMRI, tau (THK-5351) and amyloid (florbetaben) PET, clinical interviews, 

and comprehensive neuropsychological assessments. All AD subjects fulfilled the criteria for 

a clinical diagnosis of AD according to the National Institute of Neurological and 

Communicative Disorders and Stroke and Alzheimer’s disease and Related Disorders 

Association (McKhann et al., 2011) and those with MCI met the Petersen’s criteria (Petersen 

et al., 1999). Subjects with AD and MCI were amyloid positive as determined by brain 

amyloid plaque load (BAPL score) ≥2 (Sabri et al., 2015). Normal aging is defined as an 

elderly with free of neurological disease, a clinical dementia rating (CDR) 0 and a Mini-

Mental State Examination (MMSE) score higher than 27. Exclusion criteria were 1) meeting 

core clinical criteria for another form of dementia or variants of clinical AD; 2) significant 

medical illnesses or substance abuse that could influence cognitive function; 3) history of 

major systemic, psychiatric, or neurological disorder; or 4) presence of clinically significant 

cerebrovascular disease. The Institutional Review Board of the AMC and SMC approved the 

study and all subjects (or caregivers) provided informed consent for research according to 

the guidelines outlined in the Declaration of Helsinki. 
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2. 2. Neuropsychological assessment and CR surrogate markers 

We measured cognitive performance as a global composite score that combined 14 

neuropsychological test scores across multiple cognitive domains; this was based on 

approaches adopted in previous studies (Ahn et al., 2010; Jahng. et al., 2015). The memory 

domain consisted of immediate recall (sum of 3 trials, 0-12 points/trial), delayed recall (0-12 

points), and recognition test (True positive + 12 – False positive, 0-24 points) of the Seoul 

Verbal Learning Test-Elderly’s version (SVLT-E) and the immediate recall (sum of 18 scoring 

units, 0-2 points/unit) , delayed recall (sum of 18 scoring units, 0-2 points/unit), and 

recognition test (True positive + 12 – False positive, 0–24 points) of Rey Complex Figure 

Test (RCFT) (Kang and Na, 2003; Meyers and Meyers, 1995). Executive function was 

assessed via the contrasting program (a test for response inhibition, 0-20 points), Go-No-Go 

test (a pass/fail test principle using two boundary conditions, 0-20 points), category fluency 

(correct responses to presented category, such as animal and supermarket within 1 minute), 

and phonemic fluency components of the Controlled Oral Ward Association Test (correct 

responses to presented phonemes, such as Letter M and S within 1 minute) (Benton and 

Hamsher, 1989). To assess visuospatial function, we employed the score of the RCFT 

copying task (sum of 18 scoring units, 0-2 points/unit). Attention was assessed via scores on 

the forward (sum of items correctly repeated forwards, 0-9 points) and backward (sum of 

items correctly repeated backwards, 0-8 points) Digit Span Test (DST) (Lezak, 1995). Finally, 

the language domain was assessed using the Korean-Boston Naming Test (K-BNT) (correct 

naming of 60 line drawings, 1 point /drawing) (Kim and Na, 1999). We defined a global 

cognitive composite score as the average of total raw scores in the five domains.  

We used years of education and occupation complexity as two representative CR proxies. 

Education is widely accepted as the most relevant CR proxy to date. Occupation complexity 

was measured by Dictionary of Occupational Titles (DOT) ratings (Labor., 1977). The DOT 

classifies occupations based on a 9-digit code. The fourth, fifth, and sixth digits represent 
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occupational complexity with each of the three domains being data, people and things (Ex. 

092.227-010 for primary school teacher. In this case, 2 (4th) represents occupational 

complexity with data, 2 (5th) represents complexity with people and 7 (6th) means complexity 

in things.). In DOT, the lower score indicates higher occupational complexity, denoting higher 

CR.  

 

2. 3. Image acquisition 

We obtained T1-weighted MR images (repetition time (TR) = 6.8 ms; echo time (TE) = 3.1 

ms; flip angle = 9°; field of view = 270 x 252 mm²; voxel size = 1.11 x 1.11 x 1.2 mm3; slice 

number = 170 for AMC and TR = 9.9 ms; TE = 4.6 ms; flip angle = 8°; field of view = 240 x 

240 mm²; voxel size = 1.0 x 1.0 x 0.5 mm3; slice number = 360 for SMC), using a 3T Philips 

Intera Achieva (Philips Healthcare, Eindhoven, The Netherlands). T2*-weighted MR images 

for resting state fMRI (TR = 3000 ms; TE = 30 ms; flip angle = 90°; field of view = 212 x 212 

mm2; voxel size = 3.3 x 3.3 x 3.3 mm3; slice number = 48 for AMC and TR = 3000 ms; TE = 

35 ms; flip angle = 90°; field of view = 220 x 220 mm²; voxel size = 1.72 x 1.72 x 4 mm3; slice 

number=35 for SMC) were acquired using a gradient echo-planar imaging pulse sequence.  

We used a Discovery 690, 710, and 690 Elite PET/CT scanner at AMC and a Discovery STE 

PET/CT scanner at SMC (GE Healthcare, Milwaukee, USA) with the same protocol at both 

centers. Tau PET images were acquired for 20 minutes, starting 50 minutes after an 

intravenous bolus injection of 185 ± 18.5 MBq of 18F-THK5351, which binds to the 

aggregated tau of paired helical filaments. Amyloid PET images were acquired for 20 

minutes, starting 90 minutes after an intravenous bolus injection of 300 ± 30 MBq of 18F-

florbetaben. Before the PET scan, we applied a head stabilizer to minimize head motion and 

acquired brain CT images for attenuation correction. Using the ordered-subsets expectation 

maximization algorithm (iteration = 4, subset = 16), three-dimensional PET images were 
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reconstructed with voxel size 2.0 × 2.0 × 3.27 mm3. To accommodate data from different 

PET/CT scanners, we applied a three-dimensional Hoffman phantom-based PET 

harmonization method previously reported (Joshi et al., 2009).  

 

2. 4. Data preprocessing 

Individual tau and amyloid PET images were co-registered onto the individual T1-weighted 

image and normalized into MNI standard space. Preprocessed images were smoothed (6 

mm full-width half-maximum Gaussian kernel). Standard uptake value (SUV) images (40–60 

min) were also created for tau and amyloid PET. SUV was defined as the radioactivity 

concentration (MBq/mL) divided by injected dose (MBq)/patient’s weight (kg) (Chiotis et al., 

2016). Standard uptake value ratio (SUVR) images were calculated for all individuals, using 

cerebellar Gray Matter (GM) — extracted from an automated anatomical labelling (AAL) 

atlas — as a reference. All preprocessing was conducted using SPM12 (Wellcome Trust 

Centre for Neuroimaging, University College London) and MATLAB R2014b (The Mathworks, 

Natick, MA). 

In fMRI preprocessing, we discarded the first five EPI volumes because of signal 

stabilization. We then performed pre-processing for the resting state fMRI including slice-

timing correction, realignment for motion correction, co-registration to T1-weighted images, 

linear detrending, nuisance covariate regression for six motion parameters, segregation of 

white matter and CSF, spatial normalization into the MNI template, and smoothing (6 mm 

FWHM). Additionally, all preprocessed images were band-pass filtered (0.01–0.08 Hz). We 

also confirmed that there was no excessive head motion in preprocessed images (translation 

>2 mm, rotation >2°). 

To extract cortical thickness, T1 MR images underwent preprocessing steps with Freesurfer 
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6.0 (https://surfer.nmr.mgh.harvard.edu). These steps included intensity normalization, 

registration, skull stripping, segmentation, tessellation of white matter, automated topology 

correction, surface registration, and cortical parcellation (Chung et al., 2017). In addition, we 

performed manual correction for all segmentation images, focusing on the dura of skull and 

CSF space. Finally, we extracted thickness values in 68 bilateral Desikan-Killiany ROIs to 

calculate a global cortical thickness value per subject (Desikan et al., 2006). Total 

intracranial volume (TIV) was defined as the total volume of the cranium; this was obtained 

by summing volumes of gray matter, white matter, and CSF. SPM12 implemented in 

MATLAB 2014b was used to segment each tissue in native space using probability maps.  

 

2. 5. An intuitive model to estimate CR  

Based on the original definition of CR, we hypothesized CR as a residual of actual cognitive 

performance and expected performance; the latter was defined based on pathology, 

demographics, a genetic factor, and TIV (Fig. 1). The residual concept to quantify CR has 

been applied in previous studies. However, all previous works just covered structural 

measures such as cortical volume, thickness, white matter hyper intensity and tract using 

standard MR assessments. In contrast, our model focused more on the reflection of overall 

AD neuropathology. According to the trajectory of AD biomarkers, two major proteinopathies 

— Aβ and tau — may be initiated sequentially or independently decades before the onset of 

AD. These subsequently accelerate neuronal degeneration and finally trigger cognitive 

impairment (Jack et al., 2013). In this respect, Aβ, tau, and cortical atrophy are primary 

components of AD pathology (Jack et al., 2016). As a representative value for each 

pathology, we measured the global extent of tau and Aβ, and the cortical thickness of each 

subject. In tau PET imaging, we acquired images with GM probability >0.5 and extracted 

average tau SUVR value per subject in ROIs covering Braak stages (Hoenig et al., 2017). In 
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this step, we excluded the ROIs in basal ganglia and thalamus due to the off-target effect of 

THK-5351 (Harada et al., 2016). In Aβ PET imaging, we acquired images with GM 

probability >0.5 and measured a global amyloid value for combined ROIs (Jack et al., 2010). 

We calculated the mean cortical thickness among 68 ROIs as a global thickness value per 

subject. In terms of demographics, age and sex were considered relevant to AD (Li and 

Singh, 2014; Niccoli and Partridge, 2012) along with apolipoprotein E allele 4 (ApoE ε4), 

another well-known risk factor for AD (Blacker et al., 1997; Tsai et al., 1994). TIV was used 

as an estimate of brain reserve and a covariate for cortical thickness (Schofield et al., 1995). 

Then, we performed multiple linear regression with a dependent variable of cognitive 

composite score; independent variables of global tau, Aβ deposition and global thickness 

(AD neuropathology); covariates of age, sex, ApoE ε4 state, and TIV. The resulting beta 

coefficients of these variables were used to calculate an estimated cognitive composite 

score. With this assumption, we defined the CR marker as a residual, namely the difference 

between the actual and estimated cognitive performance, as follows. 

Cognitionestimated = β0 + β1 x XTau + β2 x XAβ + β3 x XCth + β4 x XAge + β5 x XSex + β6 x XApoE 

ε4 + β7 x XTIV 

Cognitive reserve (CR) = Cognitionobserved – Cognitionestimated 
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Figure 1. Schematic illustration of our intuitive model for conceptualizing CR. A:  CR is 

defined as a residual, namely the difference between actual cognitive performance and 

estimated performance in our model. Cognitionobserved: actual cognitive composite score; XTau: 

global tau deposition value; XAβ: global Aβ deposition value; XCth: global cortical thickness 

value; XApoE ε4: Apolipoprotein E ε4; XTIV: total intracranial volume. B:  X-axis ‘Neuropathologic 

burden’ denotes the combination of factors incorporating AD pathology, demographics, a 

genetic factor and brain reserve. C: Weighted positive matrix was applied across a range of 

sparsities for calculating network properties. D: Graph theoretical analysis in correlation with 

CR (Global efficiency and average clustering coefficient in global level and nodal strength, 

nodal clustering coefficient and local efficiency in local level) E: Regional connectivity 

analysis in correlation with CR (Functional connectivity and degree based statistics analysis) 
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2. 6. Validation of the CR marker 

To validate the CR marker, we calculated Pearson’s correlations between CR marker values 

and a conventional CR proxy, namely years of education. We also conducted multiple linear 

regression, using education as the dependent variable, the CR marker as the predictor, and 

cognitive performance, global cortical thickness, age, sex, and TIV as covariates. In addition, 

we performed a receiver operating characteristic (ROC) curve analysis in a discrete manner 

to evaluate how precisely the CR marker classified the high- and low-education groups. 

These two groups were divided according to the median value of education (12.0 years). 

Secondly, we also carried out Pearson’s correlation between the CR marker and another CR 

proxy, occupation complexity. DOT scores are composed of three domains, in regards to the 

complexity of dealing with data (0-6 points), people (0-8 points) and things (0-7 points) 

(Correa Ribeiro et al., 2013). Lower score indicates higher occupational complexity. We 

applied a one-tailed significance threshold as we assumed that our CR marker would 

correlate with DOT ratings in a negative way. We respectively analyzed the correlation 

between the CR marker and DOT scores in each domain (data, people and things) and 

subsequently, the total sum of DOT scores.  

For the last validation, we investigated whether our CR marker could modify the relationship 

between brain pathology (tau pathology and cortical thickness) and memory function 

(memory composite score). To identify the regions that more years of education allow the 

subjects to tolerate better tau pathology in AD spectrum, we firstly performed voxel wise 

multiple linear regression of tau PET data with education as independent variable, controlling 

for age, sex and MMSE among AD spectrum. The resulting t statistics map was thresholded 

at the voxel level at α=0.01 and corrected at the cluster level at α =0.01. After that, we 

extracted the average tau SUVR within identified regions for each subject. Then we tested 

the interaction of CR marker X tau SUVR (identified CR-related regions) on memory, 

controlling for age and sex in AD spectrum. We carried out similar procedures with cortical 
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thickness data in ROI-wise (68 Desikan-Killiany), adjusting for age, sex, MMSE and TIV 

among AD spectrum. To find regions that more education allow the patients to cope better 

with cortical atrophy in AD spectrum, the significance was regarded at FDR-corrected p 

<0.05. We obtained the average cortical thickness value within significant regions, and 

calculated atrophy value as a reciprocal of thickness value per subject. Finally, we tested the 

interaction of CR marker X cortical atrophy within areas on memory, adjusting for age, sex, 

TIV in AD spectrum.  

 

2. 7. Network construction  

We defined the network nodes as the 116 AAL atlas regions, and extracted the average 

time-series for each ROI from preprocessed fMRI (Tzourio-Mazoyer et al., 2002). AAL atlas 

is probably the most widely used parcellation method in the field of functional connectome, 

as it is convenient and labelled according to brain anatomy. As a measure of functional 

connectivity (FC), Pearson’s correlation coefficients were calculated between each pair of 

ROIs. We only considered the weighted positive matrices in our study. In the graph theory 

analysis, the matrices were thresholded at various sparsity thresholds (from 0.1 to 0.45 at 

intervals of 0.01). These ranges were chosen to maintain small-worldness in the network 

(Tian et al., 2011). 

 

2. 8. Graph theory analysis   

We performed graph theoretic analyses at global and local network levels to explore the 

neural substrates of CR across different levels of granularity. The network metrics were 

computed using the brain connectivity toolbox (http://www.brain-connectivity-toolbox.net).  

Two global network properties were calculated: 1) global efficiency — the average inverse 
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shortest path length in the network — as a measure of integration in the entire network, and 

2) average clustering coefficient — the mean of all nodal clustering values — as a measure 

of functional segregation across the network. Three additional network properties were 

assessed at a local level: 1) strength, namely the sum of the weights of links connected to 

the node; 2) clustering coefficient, namely the fraction of triangles around a node; and 3) 

local efficiency, which is defined as the average of the inverse shortest path length in the 

neighborhood of the node (Rubinov and Sporns, 2010).  

The nodal strength of node i (�(�)) is defined as the sum of the connectivity weights of the 

edges attached to each node i. 

�(�) =���	
	
�

 

The clustering coefficient of node i (�(�)) is computed as:  

�(�) = 2	��
	��	(�� − 1) 

where ki is the degree of node i and ti is the number of closed triangles attached to i.  

The local efficiency of node i (����	(�)) is calculated as: 

����	(�) = 1
���	(��� − 1) � 1

�	�	,�	∈��
 

where Gi denotes the subgraph comprising all nodes that are immediate neighbors of the 

node i. ljh is the shortest path length from node j to h.  

Finally, we computed integrated measures of each global or local metric throughout all 

network sparsity (Marques et al., 2016; Tian et al., 2011). This method can reduce the 

number of comparisons as well as the complexity of analyses. 
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where s is the sparsity interval of 0.01; X(k s) is a global network property (global 

efficiency and average clustering coefficient) at a sparsity of k s. 

���( �(�) = � �(�, � !) !
"#

$%&'
 

where X(i, k s) is a local network property (nodal strength, clustering coefficient and local 

efficiency) at a sparsity of k s. 

 

2. 9. Functional connectivity analysis   

We calculated correlations between the CR marker and FC at the edge level. Additionally, 

we specified one node as a seed, based on the results of local-level analysis, and performed 

seed to ROI analysis. Finally, to enhance the statistical power of the edge-level analysis, we 

conducted degree-based statistics analysis (DBS), a novel method for cluster-wise inference. 

DBS defines a cluster as a set of edges, among which the central node is shared, enabling 

efficient detection of clusters and center nodes (Yoo et al., 2017). In DBS analysis, an initial 

cluster-forming threshold was examined at p < 0.05, with FWE-corrected p < 0.05 used as a 

cluster-level threshold for significance. 

 

2. 10. Lobar connectivity weight analysis  

We further calculated the lobar connectivity weight (LCW) for each pair of lobes in both 

hemispheres to explore the relationship of the CR marker with lobar level (Ingalhalikar et al., 
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2014; Vanicek et al., 2016). We divided the ROIs into seven lobar-areas (frontoinsular, 

temporal, parietal, occipital lobe, basal ganglia, sensorimotor area, and cerebellum), as a 

modification of a previous study (Filippi et al., 2017). We defined LCW for each pair of lobes 

in the two hemispheres ()*, )+) as the sum of connectivity weights between region i and j.  

)��	()*, )+) = 	 � ��	
�∈,-,	∈,.

 

We carried out partial correlation analysis between the CR marker and each LCW, adjusting 

for MMSE and age. The results are shown in Supplementary Figure 6.  

 

2. 11. Subsequent analysis  

Additionally, we repeated the local level analysis in total subjects using Power ROI to check 

whether the results might be derived from the usage of specific AAL atlas (Power et al., 

2011). We used 5 mm- radius 261 ROIs, indexing the name of ROIs by applying the location 

of center of mass in each ROI into AAL atlas. We excluded 3 ROIs from original 264 ROIs as 

the value of correlation matrix in these ROIs was extracted as NaN (Not-a-Number). (Center 

of mass in three ROIs (x, y, z): (-7, -21, 65) / (20, -29, 60) / (29, 1, 4))  

We also performed subgroup analysis according to disease status (AD spectrum and normal 

aging) for CR behavioral pattern would manifest differentially depending on the group. We 

separately calculated CR in AD spectrum and normal aging and carried out local and edge 

level analysis. 

 

2. 12. Statistical analysis 

Partial correlations were calculated between the CR marker and each graph metric at a 
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global level, adjusted for MMSE and age. Global properties were considered significant at p 

< 0.05, and corrected for multiple comparisons using family wise error (FWE), which 

corresponded to p < 0.025 (two parameters). 

Pearson’s correlation coefficients were calculated between the CR marker and graph metrics 

at local and edge levels. Local metric results were considered significant at p < 0.05, and 

corrected for multiple comparisons using false discovery rate (FDR) or FWE. FWE-corrected 

p < 0.05 was approximately p < 0.00014 (i.e., 348 comparisons: 3 properties × number of 

nodes). Significance was examined at uncorrected p < 0.001 in FC analysis. Further seed-

to-ROI analyses were considered significant at FDR-corrected p < 0.05. We used R studio 

(R Studio, Boston, MA), SPSS 12 (SPSS, Chicago, IL) and BrainNet viewer 

(http://www.nitrc.org/projects/bnv/) for visualizations. 

 

3. Results  

3. 1. Demographics 

Demographics and cognitive performance of the participants are shown in Table 1. There 

was no difference in the sex ratio among the three groups; however, the age of the AD group 

was lower than that of the MCI group or normal subjects. In our dataset, fifteen of AD 

subjects corresponded to early-onset AD. The AD spectrum group had more ApoE ε4 

carriers than the normal-aging group. We confirmed the presence of differences among the 

three groups in global tau, Aβ deposition, and cortical thickness, as well as in MMSE and 

cognitive composite scores, as expected.  

 

Table 1. Demographics of subjects 
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 AD  

 

MCI 

 

Normal 

 

P value 

AD vs 
MCI 

P value 

AD vs 
Normal 

P value 

MCI vs 
Normal 

Age 63.2 (11.3) 69.2 (7.2) 68.7 (6.8) 0.031 0.052 0.966 

Sex, F (%) 14 (66.7) 23 (71.9) 22 (64.7) 0.686 0.882 0.532 

Education 11.6 (4.4) 11.0 (4.3) 10.6 (4.8) 0.906 0.717 0.918 

MMSE 19.4 (5.0) 24.3 (3.6) 28.6 (1.2) <0.001 <0.001 <0.001 

ApoE allele 4 (%) 9 (42.9) 17 (53.1) 6 (17.6) 0.465 0.041 0.003 

Disease duration 
(years)  

4.6 (3.1) 3.4 (2.7)  0.158   

Tau deposition 1.39 (0.09) 1.32 (0.11) 1.20 (0.10) 0.052 <0.001 <0.001 

Amyloid 
deposition 

1.44 (0.15) 1.50 (0.14) 1.10 (0.07) 0.169 <0.001 <0.001 

Cortical thickness 2.29 (0.13) 2.39 (0.11) 2.45 (0.12) 0.008 <0.001 0.072 

Total intracranial 
volume 

1.35 (0.12) 1.33 (0.13) 1.37 (0.13) 0.836 0.883 0.464 

Cognitive 
composite score 

31.51 (11.09) 42.83 (9.52) 61.03 (7.05) <0.001 <0.001 <0.001 

Memory 46.1 (13.3) 61.6 (14.6) 107.9 (15.2) 0.001 <0.001 <0.001 

Executive 56.0 (29.8) 75.5 (24.9) 102.3 (17.5) 0.012 <0.001 <0.001 

Language 34.1 (13.8) 37.6 (13.4) 50.8 (5.4) 0.501 <0.001 <0.001 

Attention 8.6 (2.3) 9.3 (2.6) 11.1 (2.8) 0.663 0.003 0.014 

Visuospatial 12.8 (11.9) 30.2 (6.2) 33.0 (4.5) <0.001 <0.001 0.286 

Barthel - ADL 18.8 (4.07) 19.9 (0.39) 20.0 (0.0) 0.130 0.087 0.980 

Values are mean (standard deviation) or number (%). Abbreviations: AD= Alzheimer’s 

disease subjects; MCI= Mild cognitive impairment subjects; MMSE = Mini Mental State 

Examination; Barthel – ADL= Barthel index of Activities of Daily Living; Cognitive composite 

score indicates the average score of total five domains. P values refer to analysis of variance 

models, followed by post hoc comparisons (Tukey HSD for multiple comparisons). 
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3. 2. Validation of the CR marker 

To validate the model, we assessed the relationship between cognitive performance and 

each variable via beta values. As expected, the linear regression model showed that the 

cognitive composite score was negatively related to global tau (βtau = -18.86) and amyloid 

deposition values (βAβ=-32.05). The global composite score showed a positive correlation 

with global cortical thickness (βCth = 34.11). The R-squared value of the model was 0.573 

(adjusted R2 = 0.535, F-test p <0.00001). There was no multicollinearity among variables 

(maximum variance inflation factor (VIF) <1.9). The correlations between cognitive 

composite score and global values of each brain pathology were shown in Fig. 2. 

 

Figure 2. Correlations between cognitive performance and overall AD neuropathology. A: 

Pearson’s correlation between cognitive composite score and global tau (R=-0.57). B: 

Pearson’s correlation between cognitive composite score and global amyloid (R=-0.66). C: 

Pearson’s correlation between cognitive composite score and global cortical thickness 

(R=0.47).    

 

The CR marker correlated well with years of education (r = 0.44, p <0.00005); subjects with 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT 21 

 

more years of education had greater CR than individuals with fewer years of education (Fig. 

3A). Additionally, the positive association remained between the CR marker and years of 

education after adjusting cognitive composite score, global cortical thickness, age, sex, and 

TIV (t = 2.88, p = 0.005). This result was maintained even after replacing the global 

thickness measure with global tau and Aβ deposition as covariates (t = 2.81, p = 0.006). In a 

discrete ROC curve analysis, the CR marker classified high and low education groups 

reasonably well (AUC = 0.76, 95% CI = 0.65–0.86; Fig. 3B).  

Secondly, the CR marker also correlated with occupation complexity. In our dataset, among 

the total 87 subjects, 36 participants were housewives and the job of 4 subjects was missing. 

Therefore, among 47 subjects, our CR marker showed negative correlation with DOT scores 

in data (r=-0.26, p=0.04, Fig. 3C) and total sum of DOT scores (r=-0.34, p=0.009, Fig. 3D), 

respectively. The CR marker showed no significant correlations with DOT scores in people 

(r=-0.21, p=0.07) and things (r=-0.01).  
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Figure 3. Validation of the CR marker using education and occupation complexity as CR 

proxies. A:  Pearson’s correlation between the CR marker and education (years). B:  ROC 

curve analysis. The CR marker classified high and low educated groups reasonably well 

(AUC=0.76). C: Pearson’s correlation between the CR marker and Dictionary Occupational 

Titles (DOT) scores in data domain. D: Pearson’s correlation between the CR marker and 

DOT total scores.  

 

Finally, we assessed whether our CR marker could modulate the association between brain 

pathology and memory in AD spectrum. In tau pathology, voxel-wise multiple regression 
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analysis of tau PET data showed that more years of education was associated with higher 

tau deposition within right temporoparietal regions, controlled for age, sex and MMSE 

(t=2.29, p=0.02, Fig. 4A). Then, we confirmed that the CR marker modulated the relationship 

between right temporoparietal tau PET and memory in AD spectrum, controlling for age and 

sex. Interaction effect of CR marker X right temporoparietal tau-PET on memory function 

was significant (t-stat=-2.40, p=0.02, Fig. 4B). In cortical thickness, ROI-wise multiple 

regression analysis found that more education was associated with less cortical thickness 

(more cortical atrophy) within left inferior temporal gyrus, adjusted for age, sex, MMSE and 

TIV (Fig. 4C). We defined atrophy value as a reciprocal of thickness value since the atrophy 

and thickness were in opposite directions. We tested that the CR marker modified the 

association between left inferior temporal atrophy and memory in AD spectrum, adjusting for 

age, sex and TIV. We found that the interaction effect of CR marker X left inferior temporal 

atrophy on memory was significant (t-stat=- 2.76, p=0.008, Fig. 4D). Through this validation, 

we concluded that our CR marker was validated well as a CR substitute at a reasonable 

level.   



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT 24 

 

 

Figure 4. Scatterplot for the interaction of the CR marker X brain pathology (tau and cortical 

thickness) on memory function in AD spectrum A: Tau-related CR showing regions using 

education as a CR proxy (red color regions, p < 0.01 and corrected at the cluster level at p < 

0.01). B: Scatter plot for interaction of CR marker X right temporoparietal tau SUVR on 

memory score in AD spectrum. For illustration, groups of high and low CR marker (defined 

via median value) are plotted separately. C: Cortical thickness-related CR showing regions 

using education as a CR proxy (green color areas, FDR p<0.05) D: Scatter plot for 

interaction of CR marker X left inferior temporal atrophy value (reciprocal of cortical 

thickness) on memory score in AD spectrum. For illustration, groups of high and low CR 

marker (defined via median value) are plotted separately.  

 

3. 3. Associations between the CR marker and network parameters at global and local 
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network levels 

At the global network level, the CR marker was positively correlated with global efficiency (r 

= 0.25, p = 0.019, t = 2.37) and average clustering coefficient (r = 0.24, p = 0.026, t = 2.27). 

The latter correlation approached significance after multiple comparison correction (Fig. 5A-

B). 

 

Figure 5. Correlations between the CR marker and global network properties. A:  Pearson’s 

correlation between the CR marker and global efficiency B:  Pearson’s correlation between 

the CR marker and average clustering coefficient 

 

At the local network level, the CR marker positively correlated with nodal clustering 

coefficient and local efficiency in the right middle-temporal pole (Fig. 6A, 6C). This pattern 

was consistent across all network thresholds. The nodal strength of the right middle-

temporal pole also had the highest correlation with the CR marker among all nodes, but did 

not survive for multiple comparison correction (Fig. 6B). When using derived CR marker only 

by memory composite score instead of global composite score, we found that the CR marker 
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still had highest correlation with overall graph measures in the right middle-temporal pole 

(data not shown). In additional analysis using Power ROI, the right middle-temporal pole 

maintained the tendency to have highest correlation with the CR marker in graph parameters 

among all nodes (Supplementary Fig. 1.).  

 

Figure 6. Associations between the CR marker and local graph parameters. A. Nodal 

clustering coefficient B. Nodal strength C. Local efficiency. Each left and middle figures 

represent the raw correlation maps between the CR marker and each graph parameter in 

right (R) and left (L) hemisphere. The scale bar shows the range of correlation values. The 

right figures in A and C show the significant ROI (TPOmid.R) correlated with the CR marker 

in each parameter. In nodal strength (B), TPOmid.R had the highest correlation with the CR 
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marker among all nodes, but did not survive for multiple comparison (R=0.37, uncorrected 

p<0.0005). **: FDR corrected p<0.05; ***: FWE corrected p<0.05; TPOmid.R: right middle 

temporal pole  

 

3. 4. Relationship between the CR marker and functional connectivity (FC)   

FC with the right middle-temporal pole, which had a positive correlation with the CR marker 

in the local network analysis, also had the strongest correlation with the CR marker. We 

further performed seed-to-ROI analysis, using the right middle-temporal pole as a seed. The 

right middle-temporal pole had significant connectivity with the left amygdala and superior 

temporal pole, which were positively correlated with the CR marker (correlation between the 

CR marker and FC with left superior temporal pole: 0.47, with left amygdala: 0.38, p < 0.05, 

with FDR correction). DBS analysis also revealed that one cluster of edges centered on the 

right middle-temporal pole was significantly associated with the CR marker (initial cluster 

forming threshold = 0.05, permutation = 5,000, cluster-level threshold = p < 0.05, with FWE 

correction; Fig. 7). All FCs but one showed positive correlations with the CR marker 

(uncorrected p < 0.001, Supplementary Fig. 2). This included FC in sparse cortico-cortical, 

cortico-subcortical, or cortico-cerebellum networks. One negative FC was connectivity 

between the right medial frontal gyrus and left precentral gyrus. The lateralization toward the 

right hemisphere was remarkable among FCs correlated with the CR marker. 
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Figure 7. Clusters of edges significantly correlated with the CR marker based on degree-

based statistic (DBS). One cluster of edges was found centered on the right middle-temporal 

pole (icft: 0.05, permutation: 5000, cluster-level threshold: FWE p<0.05). Two dark blue lines 

denote the FC from right middle-temporal pole to left amygdala or left superior temporal pole 

in correlation with the CR marker (seed to ROI analysis, FDR p<0.05). The full names of 

abbreviations are listed in Supplementary Table 1.   

 

3. 5. Subgroup analysis according to disease status  

We additionally performed subgroup analysis according to disease status as CR behavioral 

pattern would manifest differentially depending on the group. In AD spectrum, the CR marker 

positively correlated with nodal strength in the right middle-temporal pole (Supplementary 

Fig. 3B, FDR p<0.05). All FCs but one between left amygdala and right pallidum showed 

positive correlations with the CR marker (Supplementary Fig. 5A). Right middle-temporal 
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pole as a seed had positive connection with left superior temporal pole in relation to the CR 

marker (seed to ROI, FDR p<0.05). In normal aging, the pattern was different from the 

disease group. The CR marker in normal aging positively correlated with local efficiency of 

right precentral gyrus (Supplementary Fig. 4C, FDR p<0.05). All FCs except one between 

left supramarginal gyrus and right inferior occipital gyrus showed positive correlations with 

the CR marker (Supplementary Fig. 5B). Right precentral gyrus had positive correlations 

with bilateral cuneus, bilateral supplementary motor area and left postcentral gyrus in 

relation to the CR marker (seed to ROI, FDR p<0.05).  

 

3. 6. Validation of graph measures in right middle-temporal pole as substrates of CR  

To confirm that the derived graph theory measures really represent substrates of CR, we first 

verified whether the CR graph theory measures would be independent of brain pathology. 

We repeated correlation analysis in global and local level, replacing the CR marker with 

global tau, amyloid and thickness value respectively. No global network properties were 

significant for each global value and no significant nodes survived for multiple comparison 

except for the case of left lingual gyrus in global tau (data not shown).  

Second, we tested whether the brain measures of right middle-temporal pole would 

modulate the relationship between brain pathology (cortical thickness) and cognition (MMSE 

or memory) in AD spectrum. As a result, nodal clustering coefficient of right middle-temporal 

pole was revealed to modify the effect of cortical thickness on memory function, controlled 

for age, sex, TIV and disease stage (t=-2.08, p=0.043). It showed marginal trends to 

modulate the effect of thickness on MMSE (t=-1.99, p=0.052). In case of local efficiency, the 

interaction effect on memory (t=-1.92, p=0.06) and MMSE (t=-1.95, p=0.057) was also 

marginal.  
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4. Discussion  

In this study, we conceptualized CR based on its original definition, namely the discrepancy 

between brain pathology and cognitive performance. We validated the CR marker using 

conventional CR proxies and proved that it modulated the effect of brain pathology on 

memory. Finally, we explored the neural substrates of CR using network perspective at 

different network granularities. To accomplish this, we used multimodal neuroimaging 

including tau, Aβ PET, and structural MRI to quantify the neuropathology, and a global 

cognitive composite score to quantify cognitive performance. This approach began by 

estimating the global cognitive composite score based on AD neuropathological burden (tau, 

Aβ, cortical atrophy), demographics (age and sex), a genetic factor (ApoE ε4), and brain 

reserve (TIV). Then, we calculated the difference between observed and estimated 

composite scores as a CR marker for each individual. A greater residual (i.e., higher 

composite score than expected score) denoted greater CR. Our CR marker was validated 

using CR proxies. First, the CR marker correlated well with education. Further, the CR 

marker had a significant linear association with education after adjusting for other covariates. 

In the ROC curve analysis, the CR marker could classify the more- and less-educated 

groups reasonably well. Note that discrete analysis is not our primary interest because CR 

would be distributed in a continuous manner rather than a discrete manner. Secondly, the 

CR marker correlated with occupation complexity. As we expected, the CR marker 

negatively correlated with DOT scores in data and total scores of DOT, indicating that the 

greater CR marker stands for higher occupational complexity. Finally, we examined whether 

the CR marker modified the effect of brain pathology on memory. We identified CR-showing 

regions in tau pathology and atrophy with education. Then we examined the interaction of 

CR marker X brain pathology on memory and proved that the slope of memory decline was 

more rapid in those with high CR among AD spectrum, representing the phenomenon that 
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once cognitive decline begins, the rate of decline is more severe in patients with high 

reserve (Barulli and Stern, 2013). These results support our CR marker as a comprehensive 

and valid CR surrogate.  

Our approach has prospective advantages over existing CR proxies. First, it is intuitive 

because the parameters of our model are straightforwardly related to the original concept of 

CR (primarily, neuropathology and cognition). In this approach, we differentiated CR itself 

from CR proxies, expecting that this would reveal the most relevant properties of CR. 

Although the use of CR proxies has research value, they have innate shortcomings (Jones 

et al., 2011). Many variables may be confounding and the mechanisms can be explained 

using other theories than CR. Therefore, measurement of CR without CR proxies can help to 

overcome this limitation. Second, we tried to reflect the overall neuropathology of AD by 

using multimodal neuroimaging methods. Our concept resembles that of a latent variable 

model, which defines CR as a residual in episodic memory not attributed to brain-related 

variables or demographics (Marques et al., 2016; Reed et al., 2010; Zahodne et al., 2013) 

and previous residual model (Habeck et al., 2016). However, our model addresses not only 

neuronal degeneration (structural atrophy) but also proteinopathies prior to 

neurodegeneration (Bejanin et al., 2017; Brier et al., 2016; Rolstad et al., 2011). It also 

encompasses the attention, visuospatial, and language domains, as well as memory and 

executive function. Third, while typical proxies provide one static value of CR (for example, 

an individual has only one value for years of education throughout their post-education life), 

our CR marker is dynamic — it reflects the “present” state of CR. Given that CR depends on 

current neural activity that is changing continuously according to cognitive exposure or 

progression of disease, as proposed in the cognitive reserve hypothesis, our CR model fits 

well with this dynamism.  

In this article, we applied graph theory approach as a tool to examine neural substrates 

associated with CR. By definition, CR is related to the ability to optimize performance 
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through differential recruitment of brain networks. We especially presumed that CR would 

represent the concept of efficiency through optimization or differential recruitment. Because 

graph theory analysis can produce properties of the entire network and respective nodes 

using mathematical modelling, it could help to identify these features of CR or at least give 

insight into it.  

Our major findings were that the greater CR marker values were related to increased global 

efficiency and clustering coefficient values. In detail, subjects with higher CR showed higher 

global efficiency than those with lower CR. Global efficiency is inversely related to the 

shortest path length in the network and may be interpreted as a measure of the capacity of 

the system for parallel information transfer and integrated processing (Bullmore and Sporns, 

2009). Therefore, it also implies efficient use of limited brain resources, which is one of the 

essential bases of CR (Stern, 2002). Several studies have shown similar findings regarding 

CR and functional brain networks (Marques et al., 2016; van den Heuvel et al., 2008). In our 

study, as well as global efficiency, the correlation between average clustering coefficient and 

CR approached significance. The average clustering coefficient indicates the functional 

segregation across the entire network and reflects the ability of the brain to process 

specialized functions within highly interconnected functional subnetworks (Fornito et al., 

2016; Paldino et al., 2017). Although this brain property is known to be associated with 

cognitive task complexity and AD, its effect on cognition or CR is relatively unknown to date 

(Supekar et al., 2008; Wen et al., 2015). One study showed that demographic variables, 

especially education level, were associated with transitivity, which was used as a measure of 

the global clustering coefficient (Marques et al., 2016). Our result implies that functional 

segregation as well as integration may contribute to CR, but further studies are required.  

Our results suggest that right middle-temporal pole is a potential hub for neural substrates 

associated with CR. Nodal clustering coefficient and local efficiency in the right middle-

temporal pole were correlated significantly with the CR marker. The clustering coefficient 
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reflects the tendency of nodes to cluster together, and local efficiency measures the extent of 

integration between the immediate neighbors of a node (Latora and Marchiori, 2001). Local 

efficiency in particular reflects fault tolerance (a property that enables a system to continue 

operating properly during certain types of failure) of the system; it indicates the efficiency of 

communication between the first neighbors of given node when that node is removed 

(Achard and Bullmore, 2007; Latora and Marchiori, 2003). Consequently, this evidence 

suggests that the right middle-temporal pole would play a central role when CR manifests at 

a local network level.  

Further, the connectivity of right middle-temporal pole was also significantly correlated with 

CR. One of the connectivities was with the amygdala, a region associated with cognitive 

processes and memory (Phelps, 2004; Roozendaal et al., 2009), and the other with the left 

superior temporal pole (Supplementary Fig. 2); both regions are typically affected by AD 

pathology. The temporal pole is highly interconnected with the amygdala; therefore, the 

former is often referred to as a para-limbic region (Blaizot et al., 2010; Olson et al., 2007). 

The present results highlight the functional relevance of the temporal pole and amygdala in 

CR, not only in their anatomical relationship. This is supported by the additional DBS 

analysis, which clearly showed one cluster of edges centered on the right middle-temporal 

pole was significantly correlated with CR.  

Previous studies have recognized that the temporal pole is significantly associated with CR. 

The temporal pole has been suggested to mediate different cognitive functions such as 

attention, recognition, emotion, and memory, each of which is presumably related to CR 

(Damasio et al., 1996; Dolan et al., 2000; Olson et al., 2007; Wong and Gallate, 2012).  

Subjects with AD spectrum and a high level of education exhibit lower bilateral GM volume in 

the entorhinal cortex and temporal pole compared to individuals with a low level of education 

(Serra et al., 2011). In a network flow-based analysis of CR using the white-matter network, 

the right middle-temporal pole was one of the hub networks that represented a set of 
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connections affected by education in AD (Wook Yoo et al., 2015). In aspects of bilingualism, 

another subtype of CR proxy, healthy bilingual individuals showed more preserved temporal-

pole cortical thickness or GM volume than monolingual individuals (Abutalebi et al., 2014; 

Olsen et al., 2015). Previous associations between the temporal pole and CR were based on 

structural aspects; however, our results revealed that the temporal pole also has important 

implications regarding CR, from a functional network perspective. 

These results seem to be mainly derived from AD spectrum. In subgroup analysis, right 

middle-temporal pole remained to be associated with the CR marker in AD spectrum. The 

CR marker significantly correlated with nodal strength in the right middle-temporal pole. 

Despite not surviving for multiple comparison, right middle-temporal pole showed the 

greatest correlation with the CR marker in nodal clustering and local efficiency among all 

nodes. However, the pattern was different in normal aging. The CR marker in normal aging 

significantly correlated with local efficiency of right precentral gyrus. Right precentral gyrus 

also showed high correlation with the CR marker in nodal clustering coefficient and nodal 

strength. In previous study, grey matter density of precentral gyrus was associated with 

increased secondary network utilization for reserve against age-related change (Steffener 

and Stern, 2012).   

To confirm the graph measures of right middle-temporal pole as neural substrates of CR, we 

examined whether the measures could mitigate the effect of brain pathology on cognition in 

AD spectrum. We found that nodal clustering coefficient of right middle-temporal pole 

modified the effect of cortical thickness on memory, and had marginal effect on the 

relationship between thickness and MMSE. These results indicate that CR against AD-

related pathological changes are represented as neural compensatory mechanism centered 

on the right middle temporal pole.  

Another interesting finding was the right hemispheric lateralization among FCs correlated 
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with CR as well as LCW analysis (Supplementary Fig. 2 and 6). Several studies have 

suggested right-hemisphere preferential changes with aging in cognitive tasks (Cherry and 

Hellige, 1999; Nyberg et al., 2010). The Dallas lifespan brain study revealed that elderly 

individuals had significantly lower CBF in the right prefrontal region compared to young 

participants (Lu et al., 2011). Another study found that healthy 50–84 year old adults with 

ApoEε4 exhibited cerebral metabolic decline over a two-year period, which was particularly 

marked in the right inferior parietal lobule, and which was associated with a decline in 

memory performance (Small et al., 2000). A further study found that prefrontal WM volume 

was reduced in old age. Strikingly, WM volume in the right prefrontal cortex was correlated 

with cognitive test results (Brickman et al., 2006). Our results are consistent with the idea 

that the structural and functional integrity of the right prefrontal cortex or parietal lobe is 

beneficial to CR (Robertson, 2014).   

This study has several limitations. First, we recognize that we constructed a relatively simple 

model of CR. We did not assess interactions among AD pathologies or other neurobiological 

factors, such as vascular components or white-matter hyper-intensity. In this study, we 

suggested an intuitive model of CR based on AD pathology and examined its neural 

substrates using graph theory, rather than producing a model that explains CR perfectly. 

Second, the AD group was relatively young, and therefore more likely to involve early onset 

AD; this may introduce the risk of bias. Early onset AD is presumed to be associated with 

higher CR than late onset AD with similar clinical severity (Bigio et al., 2002; Kim et al., 2005; 

Marshall et al., 2007). However, in the present study, this issue was not considered in the 

CR calculation. Third, the number of participants was relatively small; however, the dataset 

including all tau, amyloid PET, fMRI, and T1 imaging, are still unique and uncommon. Finally, 

longitudinal studies would be helpful to confirm whether greater CR mitigates cognitive 

decline or disease progression prospectively.  

In conclusion, we proposed an intuitive model to capture CR, using multimodal neuroimaging. 
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The model incorporates overall neuropathology of AD, demographics, and a genetic factor. 

Using network perspective, we found that CR is associated with network efficiency for 

integrated processing, and the right middle-temporal pole could be a center for neural 

substrates associated with CR in AD spectrum. Our findings will be helpful to identify 

individuals who are resistant or susceptible to AD pathology. Our approach may be useful for 

deciding the likely clinical prognosis of patients, and for categorizing patients for drug trials. 

Subsequently, the middle-temporal pole is a potential target for therapeutic or preventive 

interventions against AD. Future studies will proceed to investigate whether greater CR 

mitigates cognitive decline or disease progress.  
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Supplementary information 

 

Supplementary Table 1. Network nodes in the AAL template  

AAL regions Abbreviations AAL regions Abbreviations 

Amygdala (left) AMYG.L Inferior occipital gyrus (right) IOG.R 

Amygdala (right) AMYG.R Middle occipital gyrus (left) MOG.L 

Angular gyrus (left) ANG.L Middle occipital gyrus (right) MOG.R 

Angular gyrus (right) ANG.R Superior occipital gyrus (left) SOG.L 

Calcarine fissure and 
surrounding cortex (left) CAL.L Superior occipital gyrus 

(right) SOG.R 

Calcarine fissure and 
surrounding cortex (right) CAL.R Olfactory cortex (left) OLF.L 

Caudate nucleus (left) CAU.L Olfactory cortex (right) OLF.R 

Caudate nucleus (right) CAU.R Lenticular nucleus, pallidum 
(left) PAL.L 

Anterior cingulate and 
paracingulate gyri (left) ACG.L Lenticular nucleus, pallidum 

(right) PAL.R 

Anterior cingulate and 
paracingulate gyri (right) ACG.R Paracentral lobule (left) PCL.L 

Median cingulate and 
paracingulate gyri (left) DCG.L Paracentral lobule (right) PCL.R 
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Median cingulate and 
paracingulate gyri (right) DCG.R Parahippocampal gyrus (left) PHG.L 

Posterior cingulate gyrus 
(left) PCG.L Parahippocampal gyrus 

(right) PHG.R 

Posterior cingulate gyrus 
(right) PCG.R 

Inferior parietal, but supra-
marginal and angular gyri 

(left) 

IPL.L 

Cuneus (left) 
CUN.L 

Inferior parietal, but supra-
marginal and angular gyri 

(right) 

IPL.R 

Cuneus (right) CUN.R Superior parietal gyrus (left) SPG.L 

Inferior frontal gyrus, 
opercular part (left) IFGoperc.L Superior parietal gyrus 

(right) SPG.R 

Inferior frontal gyrus, 
opercular part (right) IFGoperc.R Postcentral gyrus (left) PoCG.L 

Inferior frontal gyrus, orbital 
part (left) ORBinf.L Postcentral gyrus (right) PoCG.R 

Inferior frontal gyrus, orbital 
part (right) ORBinf.R Precentral gyrus (left) PreCG.L 

Inferior frontal gyrus, 
triangular part (left) IFGtriang.L Precentral gyrus (right) PreCG.R 

Inferior frontal gyrus, 
triangular part (right) IFGtriang.R Precuneus (left) PCUN.L 

Superior frontal gyrus, 
medial orbital (left) ORBmed.L Precuneus (right) PCUN.R 

Superior frontal gyrus, 
medial orbital (right) ORBmed.R Lenticular nucleus, putamen 

(left) PUT.L 

Middle frontal gyrus (left) MFG.L Lenticular nucleus, putamen 
(right) PUT.R 

Middle frontal gyrus, orbital 
part (left) ORBmid.L Gyrus rectus (left) REC.L 

Middle frontal gyrus, orbital 
part (right) ORBmid.R Gyrus rectus (right) REC.R 

Middle frontal gyrus (right) MFG.R Rolandic operculum (left) ROL.L 

Superior frontal gyrus, 
dorsolateral (left) SFGdor.L Rolandic operculum (right) ROL.R 

Superior frontal gyrus, 
medial (left) SFGmed.L Supplementary motor area 

(left) SMA.L 
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Superior frontal gyrus, 
medial (right) SFGmed.R Supplementary motor area 

(right) SMA.R 

Superior frontal gyrus, 
orbital part (left) ORBsup.L Supramarginal gyrus (left) SMG.L 

Superior frontal gyrus, 
orbital part (right) ORBsup.R Supramarginal gyrus (right) SMG.R 

Superior frontal gyrus, 
dorsolateral (right) SFGdor.R Inferior temporal gyrus (left) ITG.L 

Fusiform gyrus (left) FFG.L Inferior temporal gyrus 
(right) ITG.R 

Fusiform gyrus (right) FFG.R Middle temporal gyrus (left) MTG.L 

Heschl gyrus (left) HES.L Middle temporal gyrus (right) MTG.R 

Heschl gyrus (right) HES.R Temporal pole: middle 
temporal gyrus (left) TPOmid.L 

Hippocampus (left) HIP.L Temporal pole: middle 
temporal gyrus (right) TPOmid.R 

Hippocampus (right) HIP.R Temporal pole: superior 
temporal gyrus (left) TPOsup.L 

Insula (left) INS.L Temporal pole: superior 
temporal gyrus (right) TPOsup.R 

Insula (right) INS.R Superior temporal gyrus 
(left) STG.L 

Lingual gyrus (left) LING.L Superior temporal gyrus 
(right) STG.R 

Lingual gyrus (right) LING.R Thalamus (left) THA.L 

Inferior occipital gyrus (left) IOG.L Thalamus (right) THA.R 

Cerebellum_3 (left) CRBL3.L Cerebellum_10 (right) CRBL10.R 

Cerebellum_3 (right) CRBL3.R Cerebellum_Crus1 (left) CRBLCrus1.L 

Cerebellum_4_5 (left) CRBL4_5.L Cerebellum_Crus1 (right) CRBLCrus1.R 

Cerebellum_4_5 (right) CRBL4_5.R Cerebellum_Crus2 (left) CRBLCrus2.L 

Cerebellum_6 (left) CRBL6.L Cerebellum_Crus2 (right) CRBLCrus2.R 

Cerebellum_6 (right) CRBL6.R Vermis_1_2 Vermis1_2 

Cerebellum_7 (left) CRBL7.L Vermis_3 Vermis3 

Cerebellum_7 (right) CRBL7.R Vermis_4_5 Vermis4_5 
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Cerebellum_8 (left) CRBL8.L Vermis_6 Vermis6 

Cerebellum_8 (right) CRBL8.R Vermis_7 Vermis7 

Cerebellum_9 (left) CRBL9.L Vermis_8 Vermis8 

Cerebellum_9 (right) CRBL9.R Vermis_9 Vermis9 

Cerebellum_10 (left) CRBL10.L Vermis_10 Vermis10 

 

 

 

Supplementary Figure 1. Associations between the CR marker and local graph parameters 

using Power ROI. A. Nodal clustering coefficient B. Nodal strength C. Local efficiency. Each 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT 47 

 

left and middle figures represent the raw correlation maps between the CR marker and each 

graph parameter in right (R) and left (L) hemisphere. The scale bar shows the range of 

correlation values. Each right figure shows the ROIs correlated with the CR marker in each 

parameter. Although the aspect of correlation was different from using AAL atlas, right 

middle-temporal pole (TPOmid.R / coordinate of center of mass: (46, 16, -30)) maintained 

the tendency to have greatest correlation with the CR marker in graph parameters among all 

nodes. *: uncorrected p<0.005; without any indication: uncorrected p<0.05. The full names of 

abbreviations in significant ROIs are listed in Supplementary Table 1.  

 

 

Supplementary Figure 2. The functional connectivity (FC) showing significant correlation with 

the CR marker (uncorrected p<0.001). Edges of positive correlation are presented in blue 

and one negative edge is red. The thickness of edge indicates correlation coefficient 

between each FC and the CR marker (R). The full names of abbreviations are listed in 
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Supplementary Table 1. 

 

 

 

 

 

 

Supplementary Figure 3. Associations between the CR marker and local graph parameters 
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in AD spectrum. A. Nodal clustering coefficient B. Nodal strength C. Local efficiency. Each 

left and middle figures represent the raw correlation maps between the CR marker and each 

graph parameter in right (R) and left (L) hemisphere. The scale bar shows the range of 

correlation values. The right figure in B shows the significant ROI (TPOmid.R) correlated 

with the CR marker in nodal strength. In nodal clustering coefficient (A) and local efficiency 

(C), TPOmid.R had the highest correlation with the CR marker among all nodes, but did not 

survive for multiple comparison (R=0.44, uncorrected p<0.001, respectively). **: FDR 

corrected p<0.05. TPOmid.R: Right middle temporal pole.  

 

Supplementary Figure 4. Associations between the CR marker and local graph parameters 
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in normal aging. A. Nodal clustering coefficient B. Nodal strength C. Local efficiency. Each 

left and middle figures represent the raw correlation maps between the CR marker and each 

graph parameter in right (R) and left (L) hemisphere. The scale bar shows the range of 

correlation values. The right figure in C shows the significant ROI (PreCG.R) correlated with 

the CR marker in local efficiency. In nodal clustering coefficient (A), PreCG.R had the 

highest correlation with the CR marker among all nodes, but did not survive for multiple 

comparison (R=0.51, uncorrected p=0.002). In nodal strength (B), PreCG.R had the second-

highest correlation with the CR marker following Rt. supramarginal gyrus (R=0.50, 

uncorrected p=0.003). **: FDR corrected p<0.05. PreCG.R: Right precentral gyrus.  

Supplementary Figure 5. Relationships between functional connectivity (FC) and the CR 

marker in respective AD spectrum and normal aging. A. FC showing significant correlation 

with the CR marker in AD spectrum (p<0.001). B. FC showing significant correlation with the 

CR marker in normal aging (p<0.001). Edges of positive correlation are presented in blue 

and negative edges are red. The thickness of edge indicates correlation coefficient between 

each FC and the CR marker (R). The full names of abbreviations in significant ROIs are 

listed in Supplementary Table 1. 
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Supplementary Figure 6. Correlation between the CR marker and lobar connectivity weight 

(LCW). The green lines denote intrahemispheric LCW correlated with the CR marker and 

yellow lines indicate interhemispheric LCW correlated with the CR marker. The two thicker 

lines denote significant LCWs in correlation with the CR marker at uncorrected p<0.005 (left 

frontoinsular – right temporal: 0.35, right temporal – sensorimotor: 0.32, respective 

correlation coefficient) and others show significance at p<0.01. FI= fronto-insular, PAR= 

parietal, BG= basal ganglia, OCC= occipital, TEMP= temporal, SMN= sensorimotor. 

 

 


