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Abstract
Purpose Although most deep learning (DL) studies have reported excellent classification accuracy, these studies usually target
typical Alzheimer’s disease (AD) and normal cognition (NC) for which conventional visual assessment performs well. A
clinically relevant issue is the selection of high-risk subjects who need active surveillance among equivocal cases. We validated
the clinical feasibility of DL compared with visual rating or quantitative measurement for assessing the diagnosis and prognosis
of subjects with equivocal amyloid scans.
Methods 18F-florbetaben scans of 430 cases (85 NC, 233 mild cognitive impairment, and 112 AD) were assessed through visual
rating–based, quantification–based, and DL–based methods. DL was trained using 280 two-dimensional PET images (80%) and
tested by randomly assigning the remaining (70 cases, 20%) cases and a clinical validation set of 54 equivocal cases. In the
equivocal cases, we assessed the agreement among the visual rating, quantification, and DL and compared the clinical outcome
according to each modality-based amyloid status.
Results The visual reading was positive in 175 cases, equivocal in 54 cases, and negative in 201 cases. The composite SUVR
cutoff value was 1.32 (AUC 0.99). The subject-level performance of DL using the test set was 100%. Among the 54 equivocal
cases, 37 cases were classified as positive (Eq(deep+)) by DL, 40 cases were classified by a second-round visual assessment, and
40 cases were classified by quantification. The DL- and quantification-based classifications showed good agreement (83%, κ =
0.59). The composite SUVRs differed between Eq(deep+) (1.47 [0.13]) and Eq(deep−) (1.29 [0.10]; P < 0.001). DL, but not the
visual rating, showed a significant difference in the Mini-Mental Status Examination score change during the follow-up between
Eq(deep+) (− 4.21 [0.57]) and Eq(deep−) (− 1.74 [0.76]; P = 0.023) (mean duration, 1.76 years).
Conclusions In visually equivocal scans, DL was more related to quantification than to visual assessment, and the negative cases
selected by DL showed no decline in cognitive outcome. DL is useful for clinical diagnosis and prognosis assessment in subjects
with visually equivocal amyloid scans.
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Introduction

Amyloid β (Aβ) positron emission tomography (PET) can
affect a physician’s diagnostic confidence and treatment for
suspected Alzheimer’s disease (AD) patients [1]. The applica-
bility of amyloid PETas an imaging biomarker depends on the
practicality and accuracy of image interpretation.
Approximately 10% of AD patients present equivocal amy-
loid PET images [2]. The critical question regarding the func-
tional implication of equivocal scans is whether equivocal
scans are indicative of positive status, an independent entity
with unique clinical characteristics, or a combination of sub-
groups that can be reclassified as positive or negative. As a
fundamental limitation in the interpretation of equivocal
scans, there is limited histopathology to use as a reference,
and discrepancies exist between visual and quantitative mea-
surements [3].

These challenges have stimulated fully automated deep
learning (DL)–based analyses for AD diagnosis.
Convolutional neural networks (CNNs) represent a DL archi-
tecture in which the convolutional layers and pooling layers
are stacked one on top of another [4]. The intrinsic parameters
of CNNs can be adjusted until the most predictive representa-
tion is found directly from the images [5]. Such systems have
several benefits, including the reproducibility of interpreta-
tion, high accuracy, and rapid output of results [6].

Several DL-based studies using magnetic resonance imag-
ing (MRI) [7, 8], functional MRI [9], and FDG PET [10] have
been published. Although most studies report an excellent
classification accuracy of 80%, they have generally targeted
typical AD or normal cognition (NC). For typical cases, con-
ventional visual assessment performs well, and therefore, DL
has little additional value. A more clinically relevant issue is
selecting high-risk subjects who are eligible for active surveil-
lance and early treatment candidates among visually equivo-
cal cases with a near-threshold standardized uptake value ratio
(SUVR).We implemented a CNN-based DL algorithm for the
automated interpretation of equivocal amyloid scans. We val-
idated the clinical feasibility of the CNN-based DL algorithm
for assessing the diagnosis and prognosis of patients with
equivocal amyloid scans.

Materials and methods

Study population

Subjects were recruited from the Florbetaben Imaging in
Alzheimer ’s and Related Neurological Conditions
(FLORIAN) cohorts at Asan Medical Center between
February 2015 and December 2017. A total of 430
patients—85 NC, 233 mild cognitive impairment (MCI),
and 112AD—underwent T1 volumetricMRI, 18F-florbetaben

PET/CT at baseline, and cognitive measures at baseline and
follow-up. 18F-florbetaben PET images were assessed for Aβ
positivity through visual reading, quantification, and DL. The
study has been approved by the Asan Medical Center institu-
tional review board (2013-0847, 2014-0783, 2016-0588,
2016-0589, 2016-0590), and all subjects signed an informed
consent form. See the Supplement for details regarding image
acquisition and processing.

Visual grading

The visual grading was performed by two board-certified nu-
clear medicine physicians blinded to the clinical category. In
the first round, images were classified as positive, equivocal,
or negative based on the agreement between readers.
Equivocal scan was defined as a case in which the evaluations
by the two readers did not completely match. In the second
round, equivocal scans were reclassified as positive
(Eq(second visual+)) or negative (Eq(second visual−)) in the
consensus read by two expert readers. Positive scans were
defined as higher uptake in gray matter than in white matter
in the majority of slices within at least one of four brain re-
gions [11, 12]. Negative scans were defined as lower uptakes
in gray matter than in white matter with clear gray-white mat-
ter contrast in all four brain regions [11, 12]. Equivocal scans
were defined as any other findings other than typical positive
or negative scans.

DL algorithm

We developed a two-dimensional (2D) deep CNN for scoring
slice-level amyloid positivity (Supplemental Fig. 1). Before
deciding to use 2D CNN to score the slice-level amyloid pos-
itivity for our purposes, we compared the diagnostic perfor-
mances (i.e., amyloid positive/negative classification accura-
cy) of 2D CNN and 3D CNN in a test set and in a clinical
validation set composed of 54 visually equivocal cases. After
removing the peripheral pixels (the upper 6 slices and lower 6
slices from 33 slices, the left 20 pixels and right 20 pixels from
128 pixels in the left-right orientation, and the anterior 20
pixels and posterior 20 pixels from 128 pixels in anterior-
posterior orientation), we could achieve 97% patch-level ac-
curacy and 100% subject-level accuracy in the test set, which
was similar to the 2D CNN–based results (95% slice-level
accuracy and 100% subject-level accuracy). However, in the
clinical validation set composed of equivocal cases, the accu-
racy of the 3D CNN–based classification with an experienced
expert readers’ visual assessment as the gold standard was
44%, which is much lower than that of 2D CNN–based clas-
sification (69%) (Supplemental Table 1).

The 2D CNNwas trained using 2D axial slices (matrix size
of 128 × 128, 33 slices per subject), and the visual assessment
performed by the experts as a gold standard in each axial slice.
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Since our DL system was trained using a training set
that consisted of typical positive and negative cases, we
could use the visual assessment performed by the ex-
perts as a ground truth. Image intensity was normalized
in the range of 0–1 using whole-brain maximum uptake.
The data were randomly divided into training and test-
ing sets on the subject level. The deep CNN was
trained on 80% of positive or negative cases (280 cases
including 134 positive and 146 negative cases) and test-
ed on the randomly assigned remaining 20% of cases
(70 cases). We implemented an independent clinical val-
idation set of 54 visually equivocal cases. For equivocal
cases, we did not label equivocal scans by visual as-
sessment or quantification. We defined equivocal scans
as cases for which the two expert visual readers could
not reach a consensus in the first-round visual assess-
ment. Since there was no pathologic gold standard for
equivocal scan, we compared the agreement of the DL-
based assessment with visual- and quantification-based
assessment and investigated whether the DL-based clas-
sification provides clinically useful information about
the prognosis.

To increase the amount of training data multiplied by the
epoch number (i.e., 300), we conducted slice-based augmen-
tation using an axial rotation range of 15° and a scaling range
of 0.9–1.1. The images passed the 16 channels of the 2D
convolutional layer, producing 16 feature maps using 3 × 3
kernels and no stride was applied during the convolution.
Blocks of a 2D convolutional layer and a leaky rectified linear
unit (ReLU) layer were cascaded to efficiently use combina-
tions of smaller number of filter banks of cascaded convolu-
tion. Subsequently, a max-pooling layer (2 × 2 pooling size)
was used. The dropout rate was 0.25. Four convolution layers
and one fully connected layer were used for assigning slice-
based positivity.

Finally, the outputs of the aforementioned CNN (i.e., slice-
level amyloid positivity) were fed into input layer of an addi-
tional fully connected network with one hidden layer for clas-
sifying subject-level amyloid positivity (i.e., for determining if
the subject has amyloid positive scan or not).

Interpretation of feature vectors

High-dimensional feature vectors (512 nodes) were con-
densed to 50 dimensions using principal component anal-
ysis (PCA) and subsequently decreased to two dimensions
using t-distributed stochastic neighbor embedding (t-SNE)
[13]. The t-SNE was visualized in a 2D scatter plot with
each point matching an individual image in the feature
space and we attempted to minimize the distances between
similar features while maximizing those between different
features [13].

Statistics

Categorical variables were compared using the chi-square test.
Parametric data were analyzed using Student’s t test or one-
way ANOVA, and nonparametric data were analyzed using
the Mann-Whitney U test. Intermethod agreement was
assessed using Cohen’s or Fleiss’ κ. Analysis of covariance
(ANCOVA) was performed using amyloid status as an inde-
pendent variable and clinical indices as covariates. SPSS for
Windows, version 18.0 (SPSS, Chicago, IL, USA) was used.
P < 0.05 was considered statistically significant.

Results

Visual reading and quantitative measurement of PET
images

Visual readings were positive for 175 patients (composite
SUVR, 1.71 [0.18]), equivocal for 54 patients (1.41 [0.15]),
and negative for 201 patients (1.14 [0.06]; effect size = 0.79, P
< 0.001; Supplemental Table 2, Supplemental Fig. 2). Patients
in the equivocal group (74.8 [7.3]) were older than those in the
negative (69.8 [10.0]) and positive (69.5 [9.9]) groups (P =
0.001) (Table 1). The ROC cutoff of composite SUVR in
visual negative NC and positive AD cases was 1.32 (AUC
0.99).

Performance of CNN on test set

The classification accuracy of the CNN on the test set with
visual reading as a reference was 100% at the subject level and
95% at the slice level. Visual-, DL-, and quantification-based
classifications showed excellent agreement (97.9%, Fleiss' κ =
0.97).

Concordance among visual-, quantitative-,
and DL-based classifications of equivocal cases

Among 54 equivocal cases, 37 (68.5%) were classified as
positive by DL (Eq(deep+)), 40 (74.1%) by a second-round
visual assessment, and 40 (74.1%) by the SUVR cutoff
(Eq(quantification+)). DL and the quantification showed good
agreement (Supplementary Table 3a; κ = 0.59; 95% CI, 0.36–
0.83) in 45 of 54 scans (83.0%) (Fig. 1; sectors I (positive
concordance) and III (negative concordance)). In contrast,
DL and second-round visual assessment yielded poor agree-
ment (Supplementary Table 3c; κ = 0.23; 95% CI, − 0.04 to
0.51), showing discordance in 17 of 54 scans (31.5%) (Fig. 1;
the red circle in sectors I and II (n = 7) and the blue circle in
sectors III and IV (n = 10)). Negative cases (negative agree-
ment 13%) showed greater discordance than positive cases
(positive agreement 56%).
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Among 17 discordant subjects, ten were Eq(deep−/second
visual+); of them, two had focal and asymmetric parietal or
temporo-occipital uptake, four had focal posterior cingulate
uptake, and four had both findings. Seven Eq(deep+/second
visual−) subjects showed globally increased cortical uptake.
There was no difference in clinical indices between the dis-
cordant and concordant groups (Supplemental Table 4).
Figure 2 presents four representative equivocal cases with
different combinations of negative or positive categorization
by DL or second-round visual assessment.

Comparison between DL-based positive and negative
groups in visually equivocal cases

Composite SUVRs differed between Eq(deep+) (1.47 [0.13])
and Eq(deep−) (1.29 [0.10]; P < 0.001) (Fig. 3a), but not
between Eq(second visual+) (1.47 [0.14]) and Eq(second

visual−) (1.36 [0.16], P = 0.14) (Fig. 3b). Additionally, when
comparing the composite SUVR between the DL-based pos-
itive and negative groups among the visual negative cases,
Eq(deep+/visual−) (1.47 [0.13]) showed a higher composite
SUVR than the Eq(deep−/visual−) (1.29 [0.15], P = 0.07)
(Supplemental Fig. 3). Compared with Eq(deep−), Eq(deep+
) showed higher uptakes in the bilateral frontal and cingulate,
the left parietal and temporal cortex, and the right postcentral
and superior temporal gyrus (Fig. 4a). Eq(deep−) showed
higher uptakes in AD signature areas, including the bilateral
frontal, temporal, parietal, and occipital cortices (Fig. 4b),
while Eq(deep+) showed higher uptake in all brain regions
compared with that of NC (Fig. 4c).

Visualization of feature vectors

In PCA and t-SNE, positive and negative groups formed two
distinct clusters connected by Eq(deep+) and Eq(deep−), dem-
onstrating a continuum pattern (Fig. 5).

Comparison of the impact of DL- or second-round
visual rating–based amyloid status on clinical
outcome in equivocal amyloid PET cases

Among 54 equivocal cases, subsample analyses including
MMSE and GDS tests were conducted on 34 cases (retention
rate, 63%) who were eligible to return after 1.76 years of
follow-up. Patients who participated in follow-up MMSE
and GDS tests did not differ from those who did not partici-
pate in sex, age, clinical diagnosis, years of education, and
medication status (Supplemental Table 5). Eq(deep+) was less
educated and consisted of more AD and fewer NC than
Eq(deep−), although there were no differences in sex, age,
follow-up duration, or medication status (Supplemental

Fig. 1 Concordance between DL-based, quantitative-based, and second-
round visual rating–based categorization in equivocal cases

Table 1 Patient characteristics

Negative (n = 201) Equivocal (n = 54) Positive (n = 175) Total (n = 430) P value (all groups)

Age (years) 69.8 (10.0) 74.8 (7.3) 69.5 (9.9) 70.3 (9.8) 0.001

Sex (M/F) 76/125 21/33 62/113 159/271 0.850

Education years (SD) 9.2 (5.4) 9.9 (6.1) 10.3 (6.4) 9.7 (5.9) 0.170

MMSE total score (SD) 25.8 (4.3) 24.2 (4.7) 20.9 (4.9) 23.7 (5.1) < 0.001

CDR score (SD) 0.4 (0.4) 0.5 (0.2) 0.7 (0.4) 0.6 (0.4) < 0.001

BAPL

1 201 17 0 218 < 0.001
2 0 32 1 33

3 0 5 174 179

Clinical diagnosis

AD 21 13 83 117 < 0.001
MCI 106 35 87 228

NC 74 6 5 85

MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating; BAPL, brain amyloid plaque load
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Fig. 2 Representative 18F-florbetaben PET images of concordant and
discordant results between DL-based and second-round visual rating–
based classification. a A 62-year-old NC male showing well-preserved
contrast between gray and white matter with mild focal uptake in the right
parietal cortex (arrowheads) resulted in negativity for both visual assess-
ment and the DL method. SUVRs were 1.19 (composite) and 1.31 (right
parietal). Baseline and follow-up MMSE scores were 28 and 29, respec-
tively. b A 71-year-old MCI female with focal, asymmetric increased
uptake in the right parietal cortex (arrowheads) resulted in visual positiv-
ity but DL negativity. SUVRs were 1.39 (composite) and 1.68 (right

posterior cingulate). Baseline and follow-up MMSE scores were 24 and
25, respectively. c A 77-year-old MCI female with globally increased
gray matter uptake, especially in the bilateral frontal and superior parietal
cortex, resulted in visual negativity but DL positivity. SUVRs were 1.60
(composite) and 1.70 (parietal). Baseline and follow-up MMSE scores
were 17 and 14, respectively. d A 75-year-old MCI female with exten-
sively increased uptake in the right temporo-occipital cortex (arrowheads)
resulted in positivity for both visual assessment and the DL method.
SUVRs were 1.38 (composite) and 1.33 (right temporal). Baseline and
follow-up MMSE scores were 27 and 21, respectively

Fig. 3 Composite SUVR distribution according to a DL-based or b second-round visual rating–based amyloid status in visually equivocal cases. Boxes
with median, 25%, and 75% quartiles. Whiskers extended to 1.5 × interquartile range
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Table 6). The effect of visual- or DL-based amyloid status on
cognitive decline was estimated using clinical indices as co-
variates (Supplemental Table 7, Fig. 6). The follow-upMMSE
score was significantly lower than the baseline score in 34
patients (baseline, 24.09 [4.11]; follow-up, 20.82 [5.72]; P <
0.001). There was a significant difference in the MMSE score
change during the follow-up between Eq(deep+) (− 4.21
[0.57]) and Eq(deep−) (− 1.74 [0.76]) in DL-based classifica-
tion (P = 0.02). There was a significant difference in the
MMSE score change during the follow-up between
Eq(quantification+) (− 3.88 [2.94]) and Eq(quantification−)
(− 1.25 [2.12]) (P = 0.03). Intriguingly, there was no differ-
ence in theMMSE score change during the follow-up between
Eq(second visual+) (− 3.00 [0.51]) and Eq(second visual−) (−
4.28 [1.05]) (P = 0.30) (Supplemental Table 7). However, in
the MCI group, there was no difference in the 18-month AD

conversion ratio between Eq(deep+) (0.3 (7/23)) and Eq(deep
−) (0.2 (2/9)).

Discussion

The incorporation of DL can automate the interpretation of
equivocal amyloid scans. We investigated agreement among
DL, visual, and quantification methods as well as clinical im-
plications for predicting future cognitive outcomes by DL-
based Aβ positivity. DLwas more related to the quantification
than to visual assessment, and negative cases selected by DL
showed no decline in cognitive outcomes.

Computer-based image analysis has been applied to AD/
NC classification in neuroimaging field. A support vector ma-
chine study reported a sensitivity of 85.2% and a specificity of

Fig. 5 Visualization of feature
vectors with a PCA and b t-SNE

Fig. 4 Visual comparison between a Eq(deep−) and Eq(deep+), b NC and Eq(deep−), and c NC and Eq(deep+). Two-sample t tests were computed at
each FreeSurfer parcellation VOI (P = 0.05) corrected for family-wise error of multiple comparisons. Inf indicates infinity
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92.0% for AD/NC classification [14]. However, conventional
machine learning did not perform well on raw data and re-
quired a complicated feature selection process [5]. These
problems are avoided in a CNN-based method where features
can be learned automatically. FDG PET–based CNN has a
reported sensitivity of 100% and a specificity of 82% for
AD/NC classification, outperforming a visual reader’s perfor-
mance (57% sensitivity, 91% specificity) [15]. However, to
the best of our knowledge, no prior study has used equivocal
scans as a validation set in the field of DL.

Regarding the definition of equivocal scans, Hosokawa
et al. [2] focused on uptake intensity and defined it as slightly
higher gray matter uptake than that in white matter. Payoux
et al. [16] focused on the interrater agreement. To broadly
incorporate definitions suggested in prior studies, we defined
equivocal scans as images that did not fulfill the definitions of
typical positive or negative scans [17]. In a study, nine of 11
equivocal cases showed cognitive impairments and FDG dis-
tribution compatible with AD, suggesting that an equivocal
scan was indicative of a positive scan with mild uptake [2]. An
AV45-PET study presented a contradictory viewpoint in that
an equivocal scan was not a clinically separate but a quantita-
tively independent entity [16]. We presented a new perspec-
tive on equivocal scans, which comprised of two subgroups
with differences in quantification and prognosis, and DL
could distinguish between them. Model visualization with t-
SNE revealed that Eq(deep+) and Eq(deep−) formed two dis-
crete clusters that connect positive and negative clusters.

An integrated application of visual and quantitative ap-
proaches may be the optimal method for identifying true pos-
itive or negative cases; therefore, DL adds little value.
However, in 10% of all cases with near-threshold SUVR,
visual and quantitative results are discordant [3]. Herein, Aβ
positivity between DL and visual analysis was discordant in
31.5% of equivocal cases, in contrast to the 100% agreement
in the test set comprising typical cases. A total of 71% of

discordant cases were multidomain amnestic MCI. DL makes
diagnostic predictions in a different way from how humans
interpret images. During visual inspection, clinicians deter-
mine amyloid positivity based on geographic gray-white mat-
ter differentiation and are sensitive to focal uptake, while focal
uptake may be averaged by VOI-based quantification [18].
Herein, ten cases showing focal and asymmetric uptake led
to visual positivity but DL negativity. However, DL placed a
greater emphasis on the absolute pixel intensity related to
quantitative information. Seven cases showing globally in-
creased uptake without specific local uptake led to DL posi-
tivity but visual negativity. In a FDG PET–based CNN study,
the saliency map suggested that DL considers the whole brain
as a pixel-by-pixel volume [15]. Yuan et al. [19] estimated 3D
CNN–based SUVR from florbetapir PET images directly
without using conventional target and reference regions and
reported a high correlation (0.97) between the original SUVR
and 3D CNN–estimated SUVR.

Another original finding with clinical implications is that
DL-based but not visual rating–based classification provided
valuable information about future cognitive outcome. In
eauivocal cases, there was no difference in clinical indices
between follow-up and no follow-up groups. Eq(deep+) was
less educated and comprised more AD and fewer NC cases
than Eq(deep−). Most cases—100% of Eq(deep+) and 84.6%
of Eq(deep−)—were taking a cholinesterase inhibitor or an
NMDA receptor antagonist at some time points during the
study. After covariate adjustment for clinical indices, cogni-
tive outcomes differed between DL-based but not
visual rating–based classification of the positive and negative
groups. Although the evidence is still limited to a few studies,
the clinical and biological significance of a non-negligible
borderline Aβ elevation within the visual negative range has
been recently investigated. In a longitudinal study using 18F-
florbetapir PET imaging in an Alzheimer ’s Disease
Neuroimaging Initiative (ADNI) cohort (mean age 74.7 ±

Fig. 6 Comparison of the impact
of DL-based or second-round vi-
sual rating–based amyloid status
on clinical outcome in patients
with visual equivocal amyloid
PET images. a Visual equivocal,
DL-positive. b Visual equivocal,
DL-negative. c Second-round vi-
sual rating–based positive. d
Second-round visual rating–based
negative groups
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7.0), among 142 baseline florbetapir-negative individuals, 13/
142 (9.2%) individuals converted to a florbetapir-positive sta-
tus over 3.9 ± 1.4 years (3.3% per year), although most indi-
viduals (130/142, 91.5%) maintained in florbetapir-negative
status [20]. Another study investigated the relationships be-
tween postmortem pathology and centiloid (CL) quantitative
measure of antemortem 11C-PIB PET. Among the 27 visually
negative cases, 26 cases had CL values < 12.2, and the other
case was slightly above the threshold (13.8), but the postmor-
tem neuropathology showed positive amyloid pathology [21].
DL was more related to quantification than to visual assess-
ment and may detect borderline levels of amyloid deposition,
which may be missed by current binary visual criteria. Also,
the prediction of prognosis by the DL-based classification is
similar to that by the quantification-based classification. A
difference in quantitative burden may influence the difference
in prognosis between Eq(deep+) and Eq(deep−), suggesting
DL may carry clinically meaningful information regarding
future cognitive decline. Choi et al. [22] reported a CNN-
based quantitative biomarker, ConvScore, which was signifi-
cantly correlated (R = − 0.61) with 3-year cognitive outcome.
Using unbiased multilayer clustering, Gamberger et al. [23]
identified two distinct clusters with different 5-year prognoses
of 562 late MCI patients. Rapid decliners progressed to de-
mentia at five times the rate of slow decliners [23]. Herein, the
nonsignificant difference in the AD conversion rate between
Eq(deep+) and Eq(deep−) may be due to the small sample size
of MCI and a short follow-up duration (1.76 years).

DL complements the limitations of conventional visual and
quantitative analyses. Approach to explore the continuous Aβ
burden offers more sensitive information about borderline Aβ
cases that might be missed by dichotomous visual grading.
However, quantitative assessment implies the use of a cutoff,
which is cohort-specific and influenced by various methodo-
logical factors, such as preprocessing method, the choice of
the target and reference region, and the inclusion criteria for
the selected sample. However, in clinical setting, DL has prac-
tical advantages over traditional quantification because it de-
termines positivity based on raw images and is less affected by
analytical factors. In conclusion, DL provided quantitative
information to identify individuals with low but meaningful
amounts of Aβ, which in turn potentially reflected prognosis
prediction.

Promising clinical trials aiming to develop drugs for
secondary AD prevention are currently underway [24].
The study design commonly used is a randomized,
placebo-controlled trial, implying that more than half
of the participants receive a placebo for at least 18
months or longer [25]. This design raises the ethical
dilemma of exposing high-risk subjects to a meaningless
placebo and low-risk subjects to unnecessary treatment
[26]. We believe that our DL-based approach will not
only improve the efficiency and increase the statistical

power of trials with smaller sample sizes but also help
identify clinically relevant subpopulations at risk of AD
and provide reassurance to patients at a low risk of
aggravation.

Regarding the interpretation of amyloid PET, we believe
that a 2D-based approach is not inferior to a 3D-based ap-
proach for our specific purpose of amyloid positivity scoring
considering that human readers score amyloid positivity by
slice-by-slice visual inspection and determine the subject-
level positivity by integrating the slice-level positivity. A com-
parison study supported our hypothesis that the 2DCNN anal-
ysis was not inferior to the 3D CNN for test sets and showed
better performance for the validation sets with equivocal
cases. In 3D CNNs, due to the small amount of input/label
samples, large data should be generated by either augmenta-
tion or patch-based learning. Unlike 2D CNNs, which benefit
from various slicing directions, 3D augmentation is merely
achieved by rotation or scaling of a single subject. Yan et al.
[27] raised the drawback of 3D patch–based learning regard-
ing tremendously increased labeling efforts. Although Choi
et al. [22] increased the stride number to reduce parameters
to train with a small amount of 3D data, this approach leads to
omission of useful information from continuous voxels.
Without conducting the compromised approach (3D augmen-
tation, patch-based learning, or increased strides), 3D CNNs
may suffer from not only the shortage of input/label samples
but also high computer memory demands. To obtain benefits
while overcoming the limitations of 2D CNNs, we incorpo-
rated an additional fully connected network using the 2D
slice–based CNN output as input for the final subject-based
decision-making network, as conducted by previous studies
[27, 28]. By performing 2D-based data augmentation, we suc-
cessfully increased the number of input/label samples by the
factor of the slice number (N = 33). Thereby, we increased the
recognition accuracy of subject-level decisions (i.e., the 2D
CNN with a fully connected network for integrating 3D amy-
loid positivity information), which was 100% higher than that
of slice-level decisions(94%).

Our study had several limitations. First, our sample was
obtained from a single-center cohort. How technical factors,
such as camera systems and reconstruction methods, affect the
generalizability of the DL algorithm is unknown. Second, the
age of the equivocal group (74.8 [7.29]) was higher than that
of the positive group (69.53 [9.95]), which may be attributed
to the mixture of late-onset AD (LOAD) and early-onset AD
(EOAD) in the positive group; 49.4% of AD patients had
EOAD in the positive group, whereas 15.4% of patients had
EOAD in the equivocal group. Age-dependent slowing of Aβ
turnover may influence the equivocal finding, such as poor
differentiation between gray and white matter [29]. Third,
investigating features that DL uses to make predictions re-
mains a research frontier in this field. The image classification
method, training with a single label per image, has limitations,
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causing DL to associate irrelevant information with the diag-
nosis or to use features ignored by humans. Coupling with
specific masks using the semantic segmentation method may
enhance the utilization of DL for segmentation of diagnostic
clues.

Conclusion

In equivocal scans, DLwasmore related to quantification than
visual assessment, and negative cases selected by DL showed
no decline in cognitive outcome. DL is useful for assessing the
clinical diagnosis and prognosis in patients with visually
equivocal amyloid scans and could be used to effectively filter
out and provide reassurance to patients at low risk of AD
progression.
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