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Age-related aggregation of amyloid-f3 (AB) is an upstream pathological event in Alzheimer's
disease (AD) pathogenesis, and it disrupts the sleep—wake cycle. The amount of sleep
declines with aging and to a greater extent in AD. Poor sleep quality and insufficient
amounts of sleep have been noted in humans with preclinical evidence of AD. However,
how the amount and quality of sleep affects AB aggregation is not yet well understood.
Orexins (hypocretins) initiate and maintain wakefulness, and loss of orexin-producing
neurons causes narcolepsy. We tried to determine whether orexin release or secondary
changes in sleep via orexin modulation affect A pathology. Amyloid precursor protein (APP)/
Presenilin 1 (PS1) transgenic mice, in which the orexin gene is knocked out, showed a
marked decrease in the amount of A pathology in the brain with an increase in sleep
time. Focal overexpression of orexin in the hippocampus in APP/PS1 mice did not alter the
total amount of sleep/wakefulness and the amount of AB pathology. In contrast, sleep
deprivation or increasing wakefulness by rescue of orexinergic neurons in APP/PS1 mice
lacking orexin increased the amount of A3 pathology in the brain. Collectively, modulation
of orexin and its effects on sleep appear to modulate A pathology in the brain.

Age-related aggregation of amyloid-f (AB) is
an upstream pathological event in Alzheimer’s
disease (AD) pathogenesis (Holtzman et al., 2011;
Sperling et al., 2011). As the accumulation and
aggregation of A in the brain is known to de-
velop ~10-15 yr before the initial symptoms
of AD, understanding the factors that lead to
AP aggregation are likely to be important in de-
laying the onset of this pathology and delaying/
preventing AD (Holtzman et al., 2011; Sperling
etal., 2011). Diverse lines of in vitro and in vivo
studies have shown that synaptic activity and
specifically synaptic vesicle release is coupled with
presynaptic AP release (Kamenetz et al., 2003;
Cirrito et al., 2008; Bero et al., 2011; Roh etal.,
2012). In addition, sleep plays a role in the reg-
ulation of synaptic weight in the brain such that
sleep appears to downscale the slow wave ac-
tivity of the brain caused by accumulated load
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of synaptic potentiation during wakefulness
(Vyazovskiy et al., 2009). Poor sleep quality and
insufficient amounts of sleep have been noted
in humans with preclinical evidence of AD (Roh
et al., 2012; Ju and Holtzman, 2013; Ju et al.,
2014). These observations suggest that under-
standing how integrated synaptic and network
activity as measured by the sleep—wake cycle
regulates A may provide novel insights into
AD pathogenesis. However, how the amount
and quality of sleep affect AP aggregation is not
yet well understood (Ju et al., 2014). Orexins
(hypocretins) initiate and maintain wakefulness,

©2014 Roh et al.  This article is distributed under the terms of an Attribution-
Noncommercial-Share Alike-No Mirror Sites license for the first six months after
the publication date (see http://www.rupress.org/terms). After six months it is
available under a Creative Commons License (Attribution-Noncommercial-Share
Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/
by-nc-sa/3.0/).

2487


user
사각형

user
사각형


APP/PS1-21 APP/PS1-21/OR" (3.5 mo ex
A B osmo €
; i R o 7 : o)
A ) e S0 b=
'; . S .,", 8 n
= T
" s
N s ®
- g\o, !
g " AAA
] S % J : 2" 0 T —ah
— 22 APP/PS1-21 APP/PS1-21/OR™
D APP/PS1-21 F *%
207 '
U]
b=
8 n
S []
© I
0 101 N
@© A
X ]
, - ol
Ay g o . '
: ‘ APP/PS1-21 APP/PS1-21/0R™

s,

|

8
3

y A§2-£

®
3
x
=N
<

(6.0 mo
APP/PS16E9/OR” (6.0 mo)

S n a
& - s =
e . 0 T T
2 ' “ e y i APP/PS16E9 APP/PS15E9/OR™
J Hippocampus, APP/PS13E9 (C57BI6) Hippocampus, APP/PS15E9/OR’- (C57BI6)
. Light Dark . Light Dark
3 3
£ 60 £ 60+
g g
9 40 9 404
§ 20 & o0
8 8
5 -
£ 0 L 01
= =
6:00 18:00 6:00 18:00 6:00 6:00 18:00 6:00 18:00 6:00
K *
60 .I 1
3 N
S0 = N
g i - A Al
T v
w —
$ © 201
54
=
= 0

APP/PS1 APP/PS1
JOR™

Figure 1. Marked reduction of AB pathology in the APP/PS1/OR~/~ mice compared with APP/PS1 mice. (A-I) The amount of AR pathology
was noted at 3.5 (A-C) and 8.5 mo (D-F) in APP/PS1-21 mouse line and at 6 mo in APP/PS18E9 mouse line (G-1). (J and K) Amount of wakefulness at
3 mo of age before the onset of AR pathology in the brain was compared between APP/PS18E9 and APP/PS18E9/OR~/~ mice. Each mouse was inves-
tigated independently one time. Data are presented as mean + SEM (n = 4-12 in each group, two-tailed Student's t test in C, F, and | and Mann-Whitney
testinJ).*, P < 0.05;*, P < 0.01; and *** P < 0.001. Bar, 500 pm.
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Marked reduction of amyloid pathology in the APP/PS1/OR~/~ mice compared with APP/PS1 mice. (A-L) Amyloid pathology mea-

sured by AB immunoreactivity and number of amyloid plaques after X-34 staining is noted at 3.5 (A, B, G, and H) and 8.5 mo (C, D, |, and J) in the APP/
PS1-21 mouse line and at 6 mo in the APP/PS18E9 mouse line (E, F, K, and L). Each mouse was investigated independently one time. Data are presented as
mean + SEM (n = 5-9 in each group, two-tailed Student's t test). *, P < 0.05; **, P < 0.01; and ***, P < 0.001. Bar, 100 pm.

and loss of orexin-producing neurons causes narcolepsy
(de Lecea et al., 1998; Chemelli et al., 1999).

Levels of soluble AP in the extracellular interstitial fluid
(ISF) of the hippocampus in mice are dynamically and posi-
tively associated with minutes awake per hour and negatively
associated with time asleep (Kang et al., 2009). In addition,
the sleep—wake cycle also affects the A pathology in the brain.
A study in mice showed that intracerebral administration of
orexin can acutely increase both wakefulness and AP levels
and systemic treatment with an orexin receptor antagonist
decreased AP deposition in amyloid precursor protein (APP)
2009). Pharmacologi-
cal experiments suggest that orexin and the sleep—wake cycle
appear to be related to regulation of AP levels. We sought to
determine for the first time whether genetic manipulation of’
orexin has similar effects as pharmacological manipulation and,
importantly, whether orexin is influencing A levels and A3
pathology directly via orexin signaling or indirectly via its ef-
fects on the sleep—wake cycle.

transgenic mouse models (Kang et al.,

JEM Vol. 211, No. 13

RESULTS AND DISCUSSION

Marked reduction of Af} pathology in the

APP/Presenilin 1 (PS1)/Orexin knockout (OR~/~) mice

To more specifically address the role of orexin in regulating
AP levels and pathology, we used APP/PS1-21 transgenic mice
(Radde et al., 2006), which begin to develop AR deposition
at ~2 mo of age, and bred them to OR ™/~ mice (de Lecea
etal., 1998; Chemelli et al., 1999). When orexin was knocked
out in APP/PS1-21 mice (APP/PS1-21/OR ™/~ mice), there
was a marked reduction of A plaque pathology at 3.5 mo as
well as at 8.5 mo of age compared with APP/PS1-21 mice
(Fig. 1, A=F). Similar patterns of reduction in A3 deposition
were also seen when orexin was knocked out in another
mouse model that develops AR deposition, APP/PS18E9 mice
(Jankowsky et al., 2004), which begin to develop AP deposition
at 4 mo of age. APP/PS18E9/OR ~/~ mice had a marked re-
duction in A deposition at 6 mo of age compared with APP/
PS13E9 mice expressing orexin (Fig. 1, G-I). APP/PS18E9/
OR ™/~ mice demonstrated significantly decreased wakefulness

2489
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Figure 3. Strong reduction in AR species in APP/PS1 mice lacking orexin. (A-D) The amount of PBS-soluble and guanidine-soluble forms of
AB40 and AB42 were compared in APP/PS18E9/OR~/~ and APP/PS18E9 mice (left two columns) and in APP/PS1-21/OR~/~ and APP/PS1-21 mice (right
two columns). Results were obtained from the hippocampus (A and B) and from the cortex (C and D) of each group of mice. Each mouse was investigated
independently one time. All samples were measured in triplicate. Data are presented as mean + SEM (n = 5-9 in each group, two-tailed Student's t test).

* P<0.05;™ P<0.01;and ™, P < 0.001.

by 11.5% during the 12-h dark phase at 3 mo of age compared
with mice expressing orexin, before the onset of Af pathol-
ogy in the brain (Fig. 1, J and K). The difference in wakeful-
ness was more prominent during the early phases of the dark
period (6 p.m. to 12 a.m. with an 18.3% difference). Fibrillar
AB deposition assessed by X-34 staining was also markedly
reduced in the brains of APP/PS1-21/OR ™/~ mice and APP/
PS18E9/OR ™/~ mice compared with mice expressing orexin
(Fig. 2). We also assessed AP levels biochemically. The total
amount of both AB40 and AB42 solubilized by 5M guanidine
was also significantly reduced in the hippocampus as well as
in the cortex in APP/PS1-21/OR ™/~ mice compared with
APP/PS1-21 mice. Similar patterns of pathological A re-
duction were also noted in APP/PS18E9/OR ™/~ mice com-
pared with APP/PS18E9 mice (Fig. 3).

Reversal of AP pathology by modulation of sleep

rather than focal overexpression of orexin

Orexin receptors are present on hippocampal neurons, so we
focally overexpressed orexin by stereotaxic injection of a lenti-
viral vector expressing orexin into the hippocampus of APP/
PS13E9 mice to determine whether local orexin signaling was
directly leading to the effects observed on A deposition. This
treatment resulted in no changes in levels of A deposition in
the brain nor changes in sleep time despite focal increases in the
level of orexin in the hippocampus (Fig. 4). To further investigate
whether the reduction in AR pathology in orexin knockout
mice is mainly caused by the effects of orexin signaling on sleep,
expression of orexin specifically in orexinergic neurons was

2490

instituted in 1.5-mo-old APP/PS1-21/OR ™/~ mice. We used
an orexin lentiviral vector in which orexin is driven by the hypo-
cretin/orexin promoter. After injection of this vector bilaterally
in the hypothalamus, expression of orexin in orexinergic neurons
was restored (Fig. 5 F). 6 wk after injection with the hypocretin
promoter—driven orexin lentiviral vector, APP/PS1-21/OR ™/~
mice had a significantly increased amount of wakefulness as
well as increased amount of A3 deposition in the hippocampus
and cortex compared with mice injected with a control vector
(Figs. 5 E and 6). Collectively, results from focal and generalized
orexin expression in different brain regions using different pro-
moters strongly support the idea that the reduction in A pa-
thology noted in APP/PS1/OR ™/~ mouse models is caused by
secondary changes in sleep time induced by hypothalamic ex-
pression of orexin rather than by alteration in orexin signaling
in hippocampus and other brain regions.

We also analyzed the functional effect of APP/PS1/OR ™/~
mice in which orexin expression was rescued in orexinergic
neurons by measuring the diurnal fluctuation of AP in the
extracellular space using in vivo microdialysis. In APP/PS1-
21/OR ™/~ mice injected with a lentiviral vector in which
the hypocretin/orexin promoter is driving orexin expression
bilaterally in the hypothalamus, restoration of diurnal fluctua-
tion of ISF ABx-40 was found, suggesting possible functional
rescue of orexinergic neurons in the hypothalamus bilaterally
(Fig. 5, A-D). There was, however, no difference in the am-
plitude of circadian rhythms assessed by cosinor analysis be-
tween the groups (Fig. 5, C and D). This is likely caused by
the number of mice used in this experiment.

Role of orexin and sleep in Alzheimer's disease | Roh et al.
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Figure 4. No changes in AR deposition and amount of wakefulness by focal overexpression of orexin. (A-F) Amount of AB pathology
was compared after focal injection of ubiquitin-driven orexin lentiviral vector versus ubiquitin-driven GFP lentiviral vector in the hippocampus
from 3 to 6 mo (A-C) or 5 to 9 mo (D-F) in APP/PS18E9 mice. (G) Levels of orexin in the hippocampus and CSF were compared after focal injection
of orexin or GFP lentiviral vector driven by ubiquitin promoter. (H) The amount of wakefulness in APP/PS18E9 mice was compared after focal in-
jection of ubiquitin-driven orexin lentiviral vector versus ubiquitin-driven GFP lentiviral vector. Each mouse was investigated independently one time.
Data are presented as mean + SEM (n = 4-5 in each group, two-tailed Student's t test in C, F, and H; one-way ANOVA, followed by Tukey's post

hoc test in G). *, P < 0.05. Bar, 500 um.

Sleep deprivation induced AP pathology in OR~/~ mice
Finally, we wanted to determine whether sleep deprivation
increased A deposition in the absence of orexin, as previ-
ously observed in the presence of orexin (Kang et al., 2009).
We sleep-deprived APP/PS1-21/OR ™/~ mice using the
platform above water method as previously described (Kang
et al., 2009). Interestingly, relative to mice that were placed
on a large platform for 20 h per day for 3 wk, where they can
maintain a normal sleep—wake cycle, mice placed on a small
platform that experienced sleep deprivation had a significant
increase in AP plaque pathology (Fig. 7). Collectively, these
findings strongly support the idea that the amount of sleep, as
modulated by hypothalamic but not local orexin signaling, is
crucial in regulating A3 metabolism and AD pathogenesis.
Increasing evidence suggests that neuronal activity in many
brain regions is physiologically regulated by the sleep—wake
cycle (Bero et al., 2011). It has been noted in animals that

JEM Vol. 211, No. 13

decreases in sleep time and increases in amount of AR levels
and deposition have a reciprocal relationship (Kang et al., 2009;
Roh et al., 2012; Ju et al., 2014). Intriguingly, recent results
from humans also indicate that the quality or amount of sleep
is inversely associated with the amount of A3 measured in
the cerebrospinal fluid (CSF; Ju and Holtzman, 2013; Ooms
et al., 2014) and that the amount of sleep inversely correlates
with fibrillar forms of AR quantified by amyloid PET scan
(Spira et al., 2013). Treatment with active vaccination with
AB42 prevented development of AP pathology and abnor-
malities of the sleep—wake cycle in APP/PS18E9 mice (Roh
et al., 2012). This demonstrated that Af aggregation and ac-
cumulation caused a sleep abnormality. In this study, the op-
posite is also true, 1.e., an increase in sleep time caused by orexin
deficiency resulted in a decrease in the amount of A3 pathol-
ogy that developed in the brain. Collectively, these findings sug-
gest that increasing certain types of sleep should be considered
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as a therapeutic target to decrease AB-associated AD pathogen-
esis. Possible side effects of sleep induction such as excessive
daytime sleepiness or cataplexy driven by knocking out or
decreasing orexin function need to be considered in the pro-
cess of designing new therapeutic interventions targeting sleep.

It is notable that a 12% increase in the sleep time during
the dark phase was associated with >50% reduction in the de-
velopment of AP pathology in the brain. This matches well
with the previous findings that an ~15% decrease in the amount
of soluble forms of AB in the extracellular space resulted in
an up to 50% reduction of A plaque growth and formation
in the brain (Yan et al., 2009). It suggests that a small increase
in NREM sleep or small improvement in sleep quality and
the resulting decrease in AP release into the extracellular space
could be beneficial for the delay or attenuation of emergence
of AB-associated pathologies in AD. Although our data sup-
port a mechanism whereby decreased neuronal activity during
sleep results in a decrease in ISF A3, we cannot yet rule out
the contribution of increased AP clearance from the ISF as
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proposed by Xie et al. (2013). It will be important in future
experiments to determine whether different methods of sleep
or orexin modulation will trigger new methods of interven-
tion targeting AP pathophysiology in the brain. Given the as-
sociation between neuronal activity and release of tau in the
brain, further studies to determine whether the sleep—wake cycle
also influences this key molecule in the pathogenesis of AD
and other neurodegenerative diseases will be critical (Yamada
etal.,, 2014). It is important to note that other systems involved
in the sleep—wake cycle are also likely to affect the pathophysi-
ology of AD. Even though we concluded that not orexin itself
but rather the secondary changes in the sleep—wake cycle affect
AD pathophysiology in brains of mice, modulation of other
molecules that increase or decrease wakefulness such as norad-
renergic and GABAergic modulation are also likely to influence
AD pathophysiology (Matsuki et al., 2009; Carter et. al, 2010).
The location of A deposition in the human brain overlaps
very closely with a brain network called the “default mode”
network, which is made up of brain regions that appear to have

Role of orexin and sleep in Alzheimer's disease | Roh et al.
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the highest measures of aerobic glycolysis when individuals are
at rest (Raichle et al., 2001; Vlassenko et al., 2010). In addition
to the global reduction in neuronal activity resulting from an in-
crease in sleep time as shown here, focal alteration of brain
activity, connectivity, or even focal sleep modulation through
pharmacologic or other methods may also merit consideration
as potential therapies in AD and other neurodegenerative dis-
orders (Nir et al., 2011; Vyazovskiy et al., 2011). Such manip-
ulation may be a powerful way to modulate AR levels and
pathology by taking advantage of normal brain physiology.

MATERIALS AND METHODS

Mice. All experiments were approved by the Animal Studies Committee
at Washington University in St. Louis. Female APPswe/PS18E9 mice on a
B6 background (The Jackson Laboratory) were crossed with OR ™/~ mice on
a C57BL/6 background to produce APPswe/PS18E9 hemizygous/OR ™~ mice.
Then, APPswe/PS18E9; OR*/~ mice were crossed with OR ™/~ mice to ob-
tain APPswe/PS18E9 hemizygous OR ™/~ mice (APPswe/PS18E9/OR /7).
APP/PS1-21/OR ™/~ mice were obtained using the same methods begin-
ning from crossing the APP/PS1-21 mice (C57BL/6) with OR ™/~ mice
(C57BL/6). APP/PS1-21 mice (C57BL/6) were provided by M. Jucker at
the University of Tubingen (Tubingen, Germany).

ELISA. Microdialysis samples were analyzed for ABx-40, ABx-42, or AB1-x
with sandwich ELISAs. In brief, ABx-40, ABx-42, and AB1-x were captured
with monoclonal antibodies targeted against amino acids 35-40 (HJ2; Cirrito
et al., 2003), 37-42 (HJ7.4; Roh et al., 2012), and 13-28 (m266; Cirrito et al.,
2003) of AB, respectively. For ABx-40 and APBx-42 assays, a biotinylated cen-
tral domain monoclonal antibody (HJ5.1; Koenigsknecht-Talboo et al., 2008)
followed by streptavidin—poly-HR P40 (Fitzgerald) was used for detection.
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For AB1-x assays, a biotinylated N-terminal domain monoclonal antibody
(3D6; Koenigsknecht-Talboo et al., 2008) followed by streptavidin—
poly-HRP20 (Fitzgerald) was used. The antibodies m266 and 3D6 were gifts
from Eli Lilly. All assays were developed with Super Slow ELISA TMB
(Sigma-Aldrich) and read on a Bio-Tek Synergy 2 plate reader at 650 nm. Hip-
pocampal tissue lysates were analyzed for AB1-40 and AB1-42 using a denatur-
ing, sandwich ELISA specific for human AB1-40 and AB1-42 after solubilizing
the tissue in 5M guanidine as previously described (Cirrito et al., 2003).

Sleep—wake monitoring. Polysomnographic sleep—wake cycle analysis of
mice was performed as described previously (Bero et al., 2011; Roh et al.,
2012). In brief, electroencephalogram (EEG) and electromyogram (EMG)
electrodes were implanted simultaneously with a microdialysis guide cannula.
For EEG recording, two stainless steel screws attached to wire electrodes were
placed over the right frontal bone (bregma +1.0 mm, 1.5 mm lateral to mid-
line) and the right parietal bone (bregma —3.0 mm, 2.5 mm lateral to midline).
Two wire electrodes were directly inserted into the neck musculature for EMG
recording. The ground electrode was placed on the skull over the cerebellum.
Insulated leads from the EEG and EMG electrodes were soldered to a mini-
connector. After surgery, mice were housed in 12-h light/12-h dark for 2 wk
before recording began.To monitor the sleep—wake cycle, we transferred the
mice to recording cages maintained in 12-h light/12-h dark conditions (light
phase began at 6 a.m.), and we connected the mini-connector to flexible re-
cording cables. Mice were habituated to the recording cages for 3 d. At the
end of the habituation period, EEG and EMG recording began simultaneously
with collection of microdialysis samples. EEG and EMG signals were dis-
played on a monitor and stored in a computer for analysis of sleep states. EEG
and EMG recordings were assessed with a P511K AC preamplifier (Grass-
Telefactor Instruments), digitized with a DigiData 1440A Data Acquisition
System (Molecular Devices), and recorded digitally with pCLAMP 10.2
(Molecular Devices). EEG and EMG signals were filtered (EEG: high pass
1 Hz, low pass 30 Hz; EMG: high pass 10 Hz, low pass 100 Hz) and used to
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HJ3.4B (A-C) and fibrillar AB stained with X-34 (D-F) were compared between APP/PS1-21/OR~/~ mice exposed to a large platform and a small platform.
Sleep deprivation experiments were performed using a small and large platform in a cage with water on the bottom, where a mouse cannot sleep on the
small platform because of its size, whereas they can maintain a normal sleep-wake cycle on the larger platform. Mice exposed to small platforms (n = 3)
and to large platforms (n = 3) were analyzed together within a set of experiments. The results are the sum of five repeats in different mice. Each mouse
was investigated independently. Data are presented as mean + SEM (n = 13-14 in each group, two-tailed Student's t test). *, P < 0.05; and **, P < 0.01.

Bars: (A) 500 um; (D) 100 um.

identify vigilance states. EEG and EMG recordings were scored semiauto-
matically with sleep-scoring software (SleepSign; Kissei Comtec Co. Ltd.)
and binned into 10-s epochs as wakefulness, REM sleep, and NREM sleep
on the basis of standard criteria of rodent sleep. Semiautomatic sleep scoring
was visually inspected and corrected when appropriate. The automatic analy-
sis and visual inspection was performed in a blinded state to the genotype and
age of mice. Chronic sleep deprivation was performed as previously described
(Kang et al., 2009).

Plaque deposition analyses. After mice were perfused with PBS transcar-
dially, brains were removed, fixed in 4% paraformaldehyde for 24 h (4°C),
cryoprotected with 30% sucrose in PBS (4°C), frozen in powdered dry ice,
and cut on a freezing sliding microtome. Serial coronal sections (50 um thick)
were collected from the genu of the corpus callosum to caudal hippocampus.
Sections (each separated by 300 um) were stained with biotinylated HJ3.4
(AR 1-13) antibody to visualize AB-immunopositive plaques or X-34 dye to
visualize fibrillar amyloid plaques (Roh et al., 2012). Immunostained sections
and X-34—stained sections were imaged with a NanoZoomer slide scanner
(Hamamatsu Photonics). Quantitative analysis of percent area covered by
HJ3.4- or X-34—positive staining was performed using a neurostereological
method as described previously (Kim et al., 2009). In brief, images of immuno-
stained sections were exported with NDP viewer software (Hamamatsu
Photonics), converted to 8-bit grayscale with ACDSeePro 2 software (ACD
Systems), thresholded to highlight AB-specific staining, and analyzed with
Image] software (National Institutes of Health). Images of X-34—stained sec-
tions were converted to 16-bit grayscale, thresholded to highlight X-34—
specific staining, and analyzed with Image]J software. A mouse brain atlas was used
to identify hippocampal sections relative to bregma (—1.7, —2.0, —2.3 mm)
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for quantitative analysis of immuno- and X-34—positive staining as described
previously (Roh et al., 2012).

Overexpression of orexin by lentiviral vector and measurement of
orexin. Lentiviral vectors were prepared in the Hope Center Viral Vectors
Core. For focal overexpression of orexin, orexin or GFP driven by an ubiq-
uitin promoter was overexpressed via lentivirus in the hippocampus bilater-
ally in APPswe/PS18E9 mice (B6C3) starting at 5 mo of age, and the amount
of sleep and AP pathology from both groups were compared at 9 mo. To
investigate the effect of focal overexpression of orexin before AP plaque pa-
thology was formed in the hippocampus, the same lentiviral injection exper-
iments were performed in APPswe/PS18E9 mice (B6C3) with viral injection
at 3 mo and pathological assessment at 6 mo. For rescue of orexinergic neu-
rons, orexin or GFP driven by an hypocretin/orexin promoter was expressed
via lentivirus in the bilateral hypothalamus in APPswe/PS1-21/Orexin
knockout mice (C57BL/6) starting at 1.5 mo of age, and the amount of sleep
and AP pathology from both groups were compared at 3 mo. The mouse
hypocretin/orexin promoter was provided by L. de Lecea. Brains were sec-
tioned on a freezing microtome at 50-um thickness. Floating brain sections
ata 1:6 series were processed for anti—orexin-A and anti—glial fibrillary acidic
protein (GFAP) immunohistochemistry as follows: tissue was washed in Tris-
buffered saline (TBS), then quenched in 3% hydrogen peroxide solution for
10 min, washed again in TBS, and then incubated in 0.25% Triton-X solution
plus 5% normal goat serum for 30 min. Finally, the slides were incubated in
primary antibody plus 5% normal goat serum, anti—orexin-A at 1:10,000 over-
night (rabbit anti-mouse Orexin-A; Phoenix Pharmaceuticals, Inc.) or anti-
GFAP at 1:1,000 (polyclonal chicken anti-GFAP; EMD Millipore). The next
day, sections were incubated in a solution containing goat anti—rabbit IgG bio-
tinylated secondary antibody for orexin or donkey anti—chicken secondary

Role of orexin and sleep in Alzheimer's disease | Roh et al.



antibody for GFAP at 1:1,000 dilution, and signal was then amplified using
the Vectastain ABC kit at 1:400 (Vector Laboratories) followed by visualization
with DAB-nickel. Sections were carefully mounted onto glass microscope
slides, air-dried, and then dehydrated in ascending ethanols and coverslipped
with Cytoseal. CSF and brain tissue lysate samples were analyzed for orexin-A
(human, rat, mouse, porcine, bovine, and ovine) levels using a commercially
available fluorescent enzymatic immunoassay (EIA) kit (Phoenix Pharma-
ceuticals). All samples were assayed in duplicate, and the mean of the two val-
ues was reported.

In vivo microdialysis. In vivo microdialysis to assess AP and lactate in the
brain ISF of awake, freely behaving mice was performed as described previ-
ously (Cirrito et al., 2003; Roh et al., 2012). In brief, guide cannulae (BR style;
Bioanalytical Systems) were stereotaxically implanted into hippocampus
(bregma —3.1 mm, 2.5 mm lateral to midline, and 1.2 mm below the dura
at a 12° angle). Probe placement in the regions of interest was confirmed
by cresyl violet staining. Microdialysis probes (2 mm; 38-kD molecular size
cutoff; BR style; Bioanalytical Systems) were connected to a syringe pump
(Stoelting Co.), and artificial CSF, pH 7.35, containing 1.3 mM CaCl,, 1.2 mM
MgSO,, 3 mM KCI, 0.4 mM KH,PO,, 25 mM NaHCOj, and 122 mM
NaCl was continuously perfused through the microdialysis probe. For mea-
surement of ABx-40, a flow rate of 0.5 pl/min was used. Guide cannulae were
implanted 2 wk before the beginning of microdialysis. After insertion of the mi-
crodialysis probe, mice were habituated to a 12-h light/dark cycle for three
more days. On the fourth day, samples were collected and stored for analyses.

Statistical analysis. Statistical significance was determined by two-tailed
Student’s  test if the datasets fulfilled the normality test (Kolmogorov—Smirnov
test). When the dataset did not meet the assumptions of a parametric test,
Mann—Whitney rank sum test was performed. One-way ANOVA followed
by Tukey’s post hoc test for multiple comparisons was performed if the datasets
fulfilled the equal variance test (Levene’s test) and normality test (Kolmogorov—
Smirnov test). All statistical analyses were performed with Prism version 4.0
for Windows (GraphPad Software) and SPSS 15.0 for Windows (SPSS Inc.).
Values were accepted as significant if P < 0.05.

We thank Eli Lilly and Co. for providing m266 and biotinylated 3D6 anti-AB
antibodies. We thank M. Lim, E.S. Musiek, E.D. Herzog, and S. Maloney for their
advice and help for sleep studies in animals and R. Perez in the Hope Center Animal
Surgery Core for animal surgeries.

This work was supported by the American Academy of Neurology Clinical
Research Training Fellowship, the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT
and Future Planning (2013R1A1A1012925), NRF MRC grant funded by the Korean
government (MSIP; 2008-0062286), the Korea Institute of Science and Technology
Institutional Program (2£24242-13-110), grants (2014-0783, 2014-7203, and
2014-9077) from the Asan Institute for Life Sciences (to J.H. Roh), an Ellison
Medical Foundation Senior Scholar Award (to D.M. Holtzman), POTNS074969 (to
D.M. Holtzman), ROTNS090934 (to D.M. Holtzman), P3ONS057105 (to D.M. Holtzman),
the JPB Foundation, and the Cure Alzheimer's Fund (to D.M. Holtzman).

The authors declare no competing financial interests.

Submitted: 14 September 2014
Accepted: 4 November 2014

REFERENCES

Bero, A.W., P. Yan, J.H. Roh, J.R. Cirrito, F.R. Stewart, M.E. Raichle,
J.M. Lee, and D.M. Holtzman. 2011. Neuronal activity regulates the re-
gional vulnerability to amyloid-3 deposition. Nat. Neurosci. 14:750-756.
http://dx.doi.org/10.1038/nn.2801

Carter, M.E., O.Yizhar, S. Chikahisa, H. Nguyen, A. Adamantidis, S. Nishino,
K. Deisseroth, and L. de Lecea. 2010. Tuning arousal with optogenetic
modulation of locus coeruleus neurons. Nat. Neurosci. 13:1526—1533.
http://dx.doi.org/10.1038/nn.2682

Chemelli, R.M., J.T. Willie, C.M. Sinton, J.K. Elmquist, T. Scammell, C.
Lee, J.A. Richardson, S.C. Williams, Y. Xiong, Y. Kisanuki, et al. 1999.

JEM Vol. 211, No. 13

Brief Definitive Report

Narcolepsy in orexin knockout mice: molecular genetics of sleep regu-
lation. Cell. 98:437-451. http://dx.doi.org/10.1016/S0092-8674(00)
81973-X

Cirrito, J.R., P.C. May, M.A. O’Dell, J.W. Taylor, M. Parsadanian, J.W.
Cramer, J.E. Audia, J.S. Nissen, K.R. Bales, S.M. Paul, et al. 2003.
In vivo assessment of brain interstitial fluid with microdialysis reveals
plaque-associated changes in amyloid- metabolism and half-life. J.
Neurosci. 23:8844—8853.

Cirrito, J.R., J.E. Kang, J. Lee, F.R. Stewart, D.K. Verges, L.M. Silverio, G.
Bu, S. Mennerick, and D.M. Holtzman. 2008. Endocytosis is required
for synaptic activity-dependent release of amyloid-f3 in vivo. Neuron. 58:
42-51. http://dx.doi.org/10.1016/j.neuron.2008.02.003

de Lecea, L., T.S. Kilduff, C. Peyron, X. Gao, P.E. Foye, P.E. Danielson,
C. Fukuhara, E.L. Battenberg, V.T. Gautvik, F.S. Bartlett II, et al. 1998.
The hypocretins: hypothalamus-specific peptides with neuroexcitatory
activity. Proc. Natl. Acad. Sci. USA. 95:322-327. http://dx.doi.org/10
.1073/pnas.95.1.322

Holtzman, D.M., A. Goate, J. Kelly, and R. Sperling. 2011. Mapping the
road forward in Alzheimer’s disease. Sci. Transl. Med. 3:114ps48. http://
dx.doi.org/10.1126/scitranslmed.3003529

Jankowsky, J.L., D J. Fadale, ]J. Anderson, G.M. Xu, V. Gonzales, N.A.
Jenkins, N.G. Copeland, M.K. Lee, L.H. Younkin, S.L. Wagner, et al.
2004. Mutant presenilins specifically elevate the levels of the 42 residue
B-amyloid peptide in vivo: evidence for augmentation of a 42-specific
v secretase. Hum. Mol. Genet. 13:159-170. http://dx.doi.org/10.1093/
hmg/ddh019

Ju, Y.E., and D.M. Holtzman. 2013. Sleep evaluation by actigraphy for
patients with Alzheimer disease—reply. JAMA Neurol. 70:1074-1075.
http://dx.doi.org/10.1001/jamaneurol.2013.3490

Ju, Y.E., B.P. Lucey, and D.M. Holtzman. 2014. Sleep and Alzheimer dis-
ease pathology—a bidirectional relationship. Nat Rev Neurol. 10:115—
119. http://dx.doi.org/10.1038/nrneurol.2013.269

Kamenetz, F., T. Tomita, H. Hsieh, G. Seabrook, D. Borchelt, T. Iwatsubo,
S. Sisodia, and R. Malinow. 2003. APP processing and synaptic func-
tion. Neuron. 37:925-937. http://dx.doi.org/10.1016/S0896-6273(03)
00124-7

Kang, J.E., M.M. Lim, RJ. Bateman, J.J. Lee, L.P. Smyth, J.R. Cirrito, N.
Fujiki, S. Nishino, and D.M. Holtzman. 2009. Amyloid-8 dynamics are
regulated by orexin and the sleep-wake cycle. Science. 326:1005—-1007.
http://dx.doi.org/10.1126/science.1180962

Kim, J., J.M. Castellano, H. Jiang, J.M. Basak, M. Parsadanian, V. Pham,
S.M. Mason, S.M. Paul, and D.M. Holtzman. 2009. Overexpression of
low-density lipoprotein receptor in the brain markedly inhibits amyloid
deposition and increases extracellular A 8 clearance. Neuron. 64:632—
644. http://dx.doi.org/10.1016/j.neuron.2009.11.013

Koenigsknecht-Talboo, J., M. Meyer-Luehmann, M. Parsadanian, M. Garcia-
Alloza, M.B. Finn, B.T. Hyman, B.J. Bacskai, and D.M. Holtzman.
2008. Rapid microglial response around amyloid pathology after systemic
anti-Af antibody administration in PDAPP mice. J. Neurosci. 28:14156—
14164. http://dx.doi.org/10.1523/JNEUR OSCI.4147-08.2008

Matsuki, T.,M.Nomiyama, H. Takahira, N. Hirashima, S. Kunita, S. Takahashi,
K. Yagami, T.S. Kilduff, B. Bettler, M. Yanagisawa, and T. Sakurai.
2009. Selective loss of GABAy receptors in orexin-producing neu-
rons results in disrupted sleep/wakefulness architecture. Proc. Natl.
Acad. Sci. USA. 106:4459-4464. http://dx.doi.org/10.1073/pnas
0811126106

Nir, Y., RJ. Staba, T. Andrillon, V.V. Vyazovskiy, C. Cirelli, I. Fried, and
G. Tononi. 2011. Regional slow waves and spindles in human sleep.
Neuron. 70:153—169. http://dx.doi.org/10.1016/j.neuron.2011.02.043

Ooms, S., S. Overeem, K. Besse, M.O. Rikkert, M. Verbeek, and J.A.
Claassen. 2014. Effect of 1 night of total sleep deprivation on cerebro-
spinal fluid B-amyloid 42 in healthy middle-aged men: a randomized
clinical trial. JAMA Neurol. 71:971-977. http://dx.doi.org/10.1001/
jamaneurol.2014.1173

Radde, R., T. Bolmont, S.A. Kaeser, J. Coomaraswamy, D. Lindau, L.
Stoltze, M.E. Calhoun, F. Jiggi, H. Wolburg, S. Gengler, et al. 2006.
AB42-driven cerebral amyloidosis in transgenic mice reveals early and
robust pathology. EMBO Rep. 7:940-946. http://dx.doi.org/10.1038/
sj.embor. 7400784

2495


http://dx.doi.org/10.1016/S0092-8674(00)81973-X
http://dx.doi.org/10.1016/S0092-8674(00)81973-X
http://dx.doi.org/10.1016/j.neuron.2008.02.003
http://dx.doi.org/10.1073/pnas.95.1.322
http://dx.doi.org/10.1073/pnas.95.1.322
http://dx.doi.org/10.1126/scitranslmed.3003529
http://dx.doi.org/10.1126/scitranslmed.3003529
http://dx.doi.org/10.1093/hmg/ddh019
http://dx.doi.org/10.1093/hmg/ddh019
http://dx.doi.org/10.1001/jamaneurol.2013.3490
http://dx.doi.org/10.1038/nrneurol.2013.269
http://dx.doi.org/10.1016/S0896-6273(03)00124-7
http://dx.doi.org/10.1016/S0896-6273(03)00124-7
http://dx.doi.org/10.1126/science.1180962
http://dx.doi.org/10.1016/j.neuron.2009.11.013
http://dx.doi.org/10.1523/JNEUROSCI.4147-08.2008
http://dx.doi.org/10.1073/pnas.0811126106
http://dx.doi.org/10.1073/pnas.0811126106
http://dx.doi.org/10.1016/j.neuron.2011.02.043
http://dx.doi.org/10.1001/jamaneurol.2014.1173
http://dx.doi.org/10.1001/jamaneurol.2014.1173
http://dx.doi.org/10.1038/sj.embor.7400784
http://dx.doi.org/10.1038/sj.embor.7400784
http://dx.doi.org/10.1038/nn.2801
http://dx.doi.org/10.1038/nn.2682

JEM

Raichle, M.E., A.M. MacLeod, A.Z. Snyder, W.J. Powers, D.A. Gusnard,
and G.L. Shulman. 2001. A default mode of brain function. Proc. Natl.
Acad. Sci. USA. 98:676—682. http://dx.doi.org/10.1073/pnas.98.2.676

Roh, J.H., Y. Huang, A.W. Bero, T. Kasten, F.R. Stewart, R.J. Bateman,
and D.M. Holtzman. 2012. Disruption of the sleep-wake cycle and
diurnal fluctuation of B-amyloid in mice with Alzheimer’s disease
pathology. Sci. Transl. Med. 4:150ra122. http://dx.doi.org/10.1126/
scitranslmed.3004291

Sperling, R.A., P.S. Aisen, L.A. Beckett, D.A. Bennett, S. Craft, A.M. Fagan,
T. Iwatsubo, C.R. Jack Jr., J. Kaye, T.J. Montine, et al. 2011. Toward
defining the preclinical stages of Alzheimer’s disease: recommendations
from the National Institute on Aging-Alzheimer’s Association work-
groups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement.
7:280-292. http://dx.doi.org/10.1016/].jalz.2011.03.003

Spira, A.P., A.A. Gamaldo, Y. An, M.N. Wu, E.M. Simonsick, M. Bilgel,
Y. Zhou, D.F. Wong, L. Ferrucci, and S.M. Resnick. 2013. Self-
reported sleep and B-amyloid deposition in community-dwelling older
adults. JAMA Neurol. 70:1537—-1543.

Vlassenko, A.G., S.N. Vaishnavi, L. Couture, D. Sacco, B.J. Shannon, R.H.
Mach, J.C. Morris, M.E. Raichle, and M.A. Mintun. 2010. Spatial corre-
lation between brain aerobic glycolysis and amyloid-f3 (AB) deposition. Proc.

2496

Natl. Acad. Sci. USA. 107:17763-17767. http://dx.doi.org/10.1073/
pnas. 1010461107

Vyazovskiy, V.V., U. Olcese, Y.M. Lazimy, U. Faraguna, S.K. Esser, J.C.
Williams, C. Cirelli, and G. Tononi. 2009. Cortical firing and sleep
homeostasis. Neuron. 63:865-878. http://dx.doi.org/10.1016/j.neuron
.2009.08.024

Vyazovskiy, V.V., U. Olcese, E.C. Hanlon, Y. Nir, C. Cirelli, and G. Tononi.
2011. Local sleep in awake rats. Nature. 472:443—447. http://dx.doi.org/
10.1038/nature 10009

Xie, L., H. Kang, Q. Xu, M.J. Chen, Y. Liao, M. Thiyagarajan, ]J.
O’Donnell, D.J. Christensen, C. Nicholson, J.J. Iliff, et al. 2013. Sleep
drives metabolite clearance from the adult brain. Science. 342:373-377.
http://dx.doi.org/10.1126/science. 1241224

Yamada, K., J.K. Holth, F. Liao, F.R. Stewart, T.E. Mahan, H. Jiang,
J.R. Cirrito, T.K. Patel, K. Hochgrife, E.M. Mandelkow, and D.M.
Holtzman. 2014. Neuronal activity regulates extracellular tau in vivo.
J. Exp. Med. 211:387-393. http://dx.doi.org/10.1084/jem.20131685

Yan, P., A-W. Bero, J.R. Cirrito, Q. Xiao, X. Hu, Y. Wang, E. Gonzales,
D.M. Holtzman, and J.M. Lee. 2009. Characterizing the appearance and
growth of amyloid plaques in APP/PS1 mice. J. Neurosci. 29:10706—
10714. http://dx.doi.org/10.1523/JNEUR OSCI.2637-09.2009

Role of orexin and sleep in Alzheimer's disease | Roh et al.


http://dx.doi.org/10.1073/pnas.98.2.676
http://dx.doi.org/10.1126/scitranslmed.3004291
http://dx.doi.org/10.1126/scitranslmed.3004291
http://dx.doi.org/10.1016/j.jalz.2011.03.003
http://dx.doi.org/10.1073/pnas.1010461107
http://dx.doi.org/10.1073/pnas.1010461107
http://dx.doi.org/10.1016/j.neuron.2009.08.024
http://dx.doi.org/10.1016/j.neuron.2009.08.024
http://dx.doi.org/10.1038/nature10009
http://dx.doi.org/10.1038/nature10009
http://dx.doi.org/10.1126/science.1241224
http://dx.doi.org/10.1084/jem.20131685
http://dx.doi.org/10.1523/JNEUROSCI.2637-09.2009

