
NeuroImage 52 (2010) 142–157

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r.com/ locate /yn img
Spectral-based automatic labeling and refining of human cortical sulcal curves using
expert-provided examples

Ilwoo Lyu a, Joon-Kyung Seong a,⁎, Sung Yong Shin a, Kiho Im b, Jee Hoon Roh d, Min-Jeong Kim d,
Geon Ha Kim d, Jong Hun Kim d, Alan C. Evans c, Duk L. Na d, Jong-Min Lee b

a Computer Science Department, KAIST, South Korea
b Department of Biomedical Engineering, Hanyang University, South Korea
c McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
d Department of Neurology, Sungkyunkwan University, Samsung Medical Center, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, South Korea
⁎ Corresponding author.
E-mail address: seong@kaist.ac.kr (J.-K. Seong).

1053-8119/$ – see front matter © 2010 Elsevier Inc. A
doi:10.1016/j.neuroimage.2010.03.076
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 25 November 2009
Revised 26 February 2010
Accepted 26 March 2010
Available online 2 April 2010

Keywords:
Sulcal curve
Labeling
Refining
Spectral matching
Sulcal variability
We present a spectral-based method for automatically labeling and refining major sulcal curves of a human
cerebral cortex. Given a set of input (unlabeled) sulcal curves automatically extracted from a cortical surface
and a collection of expert-provided examples (labeled sulcal curves), our objective is to identify the input
major sulcal curves and assign their neuroanatomical labels, and then refines these curves based on the
expert-provided example data, without employing any atlas-based registration scheme as preprocessing. In
order to construct the example data, neuroanatomists manually labeled a set of 24 major sulcal curves (12
each for the left and right hemispheres) for each individual subject according to a precise protocol. We
collected 30 sets of such curves from 30 subjects. Given the raw input sulcal curve set of a subject, we choose
the most similar example curve to each input curve in the set to label and refine the latter according to the
former. We adapt a spectral matching algorithm to choose the example curve by exploiting the sulcal curve
features and their relationship. The high dimensionality of sulcal curve data in spectral matching is
addressed by using their multi-resolution representations, which greatly reduces time and space
complexities. Our method provides consistent labeling and refining results even under high variability of
cortical sulci across the subjects. Through experiments we show that the results are comparable in accuracy
to those done manually. Most output curves exhibited accuracy values higher than 80%, and the mean
accuracy values of the curves in the left and the right hemispheres were 84.69% and 84.58%, respectively.
ll rights reserved.
© 2010 Elsevier Inc. All rights reserved.
Introduction

Sulcal and gyral folding patterns are principal landmarks of a
human cerebral cortex, which are related to brain functions and
functional regions (Dubois et al., 2008; Fischl et al., 2008; Im et al.,
2010). Sulcal landmarks have played key roles in brain model
registration (Hellier and Barillot, 2003), in discovering brain diseases
and monitoring brain growth (Cachia et al., 2008; Thompson et al.,
2004; Seong et al., 2010), and in measuring brain variability
(Thompson et al., 1996a; Lohmann et al., 1999; Fillard et al., 2007;
Im et al., 2010). Thus, labeling these landmarks is important for
analysis of functional and structural neuroimaging data.

Many geometric methods dealt with extraction of sulcal land-
marks by exploiting geometric information such as isotropic geodesic
distance maps (Shi et al., 2008), sulcal depth maps (Kao et al., 2007),
curvature-based folding measures (Batchelor and Castellano Smith,
2002; Rodriguez-Carranza et al., 2006; Pienaar and Fischl, 2008), and
anisotropic geodesic maps (Seong et al., 2010). However, none of
these methods addressed the issue of labeling given raw input sulci
while refining them. Moreover, the geometry-based approach cannot
distinguish the primary cortical sulci effectively from the secondary or
tertiary sulci. The primary sulci in sulcal fundic regions are more
consistent and invariant across different brains, which are useful in
neuroimaging applications (Perrot et al., 2008; Im et al., 2010).
Cortical parcellation methods for analyzing structural neuroimaging
data (Rademacher et al., 1992; Caviness et al., 1996) may not be
employed to address the issue of refining sulcal curves either, due to
lack of neuroanatomical conventions.

Based on neuroanatomical and geometric information on a cortical
surface, Fischl et al. (2004) presented a technique for parcellating the
entire surface into gyral regions. FreeSurfer can also be used for
cortical surface segmentation. In principle, labeled sulcal curves could
be computed using these tools since sulcal curves are the common
boundaries of gyral regions. In practice, however, it is nontrivial to
segment the common boundaries into sulcal curves by identifying
their end points. Moreover, as pointed out in Fischl et al. (2004), the
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parcellation results exhibit large variations along sulcal regions, which
makes it difficult to accurately trace sulcal curves along fundic regions
of high curvature.

For labeling cortical features, Sandor and Leahy (1997) used a
manually labeled brain atlas. An atlas encodes neuroanatomical
labeling conventions determined by knowledge on structure–function
relationships, and cytoarchitectronic or receptor labeling properties of
regions, but lacks in geometrical details of individual cortical surfaces.
Their approachwarps the atlas to an individual subject's cortical surface
in order to inherit the labels of cortical features from the atlas. Since this
method depends on an atlas registration scheme, the geometric
variability of each individual subject's cortical surface was neither
exploited fully nor used to refine the cortical features. Similar surface-
fitting methods have been reported in Vaillant et al. (1996), Thompson
et al. (1996b), Lohmann (1998), Lohmann and von Cramon (2000) and
Tao et al. (2002). Unlike these methods, our approach does not employ
any atlas-based registration scheme as preprocessing.

A graph-based approach was taken in Goualher et al. (1999) and
Mangin et al. (1995). In this approach, cortical sulciwere representedby
nodes, while their relationships were represented by arcs. The detected
sulci were then labeled semi-automatically based on a training set
which was prepared manually. This approach was further extended to
detection of major cortical sulci, in which joint sulcal shape priors
between neighboring sulci were used in the learning process (Shi et al.,
2009). However, the approach simplified the sulcus detection problem
by removing sulcal curves crossing over gyral regions and representing
each sulcus as a simple curve. A watershed transform-based approach
was presented in Lohmann (1998) and Rettmann et al. (2002), inwhich
segmented regionsweremanually labeled by an expert. Learning-based
techniques were also proposed in Riviere et al. (2002), Behnke et al.
(2003), Tu et al. (2007), and Perrot et al. (2008) to detect and label sulci,
Fig. 1. Lateral and medial regions of five sample left he
whichdependonspecific atlas registration schemes (Riviere et al., 2002;
Behnke et al., 2003; Perrot et al., 2008) or suffer from lacks of
neuroanatomical conventions (Tu et al., 2007). Graph-based learning
techniques were integrated into a public-domain system BrainVisa
(Riviere et al., 2003), and cortical sulci that were detected or labeled by
this system have been successfully used in many neuroimaging
applications (Cachia et al., 2008; Cykowski et al., 2008a,b; Dubois et
al., 2008; Douaud et al., 2009).

In this paper, a sulcus is represented as a sequence of (possibly
disconnected) curve segments that follows the deepest part of the
sulcal region. Ideally, sulcal curves should not only convey neuroan-
atomical conventions but also reflect individual variability of cortical
surface geometry across subjects. However, the individual geometric
variability makes it difficult to label brain structures as pointed out in
Fischl et al. (2002), Pitiot et al. (2004) and Fillard et al. (2007). We
present an automated method for labeling and refining sulcal curves
of a human cerebral cortex: Given a set of input (unlabeled) sulcal
curves of a subject and a collection of expert-provided examples
(labeled sulcal curves), this method labels the input curves automat-
ically extracted from a cortical surface while also refining these
curves, according to neuroanatomical conventions conveyed by the
examples. Our objective is to label and refine the input curves so as to
reflect not only neuroanatomical conventions but also individual
variability of cortical surface geometry. The input sulcal curves are
extracted automatically from a cortical surface by using themethod in
(Seong et al., 2010), and the expert-provided examples are prepared
manually by neuroanatomists according to a precise protocol. For
experiments, we used a set of 24 major sulcal curves (12 each for the
left and the right hemispheres) from each subject in the example
database, and collected 30 sets of such curves from 30 different
subjects (Fig. 1). Extracted automatically based on pure geometric
mispheres with manually extracted sulcal curves.
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information, the input sulcal curves contain many minor sulcal curves
and extraneous curve segments, which should be refined. Our
approach first chooses an example curve for each of the input major
curves, if any, by adapting a spectral matching method (Leordeanu
and Hebert, 2005) in computer vision to our problem setting, and then
labels the input curve while also refining it with respect to the chosen
example curve. We employ the spectral-based method since it is
robust to noise and outliers and facilitates partial curve matching.
Adopting a multi-resolution scheme for representing both the input
and example curves, we are able to greatly reduce time and space
complexities for the spectral matching. Refining an input sulcal curve
involves three tasks: discarding minor input curves, cutting off
extraneous branches of major sulcal curves, and filling small gaps
between curve segments. Through experiments on the raw input
sulcal curves automatically extracted from 30 subjects, we show the
refining results are comparable in accuracy to those done manually.
Materials and method

Data acquisition

This study used the data set of the International Consortium for
Brain Mapping (ICBM) (Mazziotta et al., 1995; Watkins et al., 2001).
Data were collected from 152 unselected normal volunteers with
written informed consents, under the approval of the Research Ethics
Committee of the Montreal Neurological Institute and Hospital. The
subjects were scanned using a Phillips Gyroscan 1.5 T superconduct-
ing magnet system which yielded a sequence of T1-weighted images
(3-dimensional [3D] fast field echo scan with 140–160 slices, 1-mm
isotropic resolution, time repetition [TR]=18 ms, time echo [TE]
=10 ms, flip angle=30). We collected a group of 148 subjects
composed of 83 men and 65 women. Their ages ranged from 18 to 44
years (mean±standard deviation: 25.0±4.9 years). From this group,
we selected 30 subjects for expert-provided example data acquisition,
consisting of 15 men (26.8±4.9 years) and 15 women (26.2±4.0
years).

Input images were processed using the standard MNI anatomical
pipeline without atlas-based surface registration. Using a linear
transformation, the native MR images were first normalized into a
standardized stereotaxic space and then corrected for intensity
nonuniformity (Collins et al., 1994; Sled et al., 1998). The registered
and corrected images were then classified into white and gray
Fig. 2.Overview of the proposed approach: The input sulcal curves are extracted from a cortic
labeled based on the expert-provided example data using the proposed spectral-based meth
matters, the cerebrospinal fluid, and the background using an
advanced neural-net classifier (Zijdenbos et al., 1996). Finally, the
CLASP algorithm (Kim et al., 2005; MacDonald et al., 2000) was used
to automatically extract the hemispheric surfaces of the inner and
outer cortices with 40,962 vertices. The accuracy of this techniquewas
recently demonstrated in a phantom-based quantitative cross-
validation study, which showed the high geometric and topologic
accuracy of the cortical surfaces (Lee et al., 2006). We used outer
cortical surfaces for both extraction of the input sulcal curves and the
expert-provided examples.
Automatic labeling and refining of major sulcal curves

Basic Idea
Let P and Q be a set of input sulcal curves on a cortical surface and a

collection of expert-provided example data, respectively. Being
extracted based on pure geometric information, P contains minor
sulcal curves and major sulcal curves with extraneous branches.

In order to account for high variability of sulcal folding patterns,
multiple example data are sampled from different subjects for each
major sulcus. We used 24 (possibly disconnected) major sulcal curves
per subject and 30 subjects to form example data. Thus, an example
set Q provides the label of an input major sulcal curve and its
geometric variations, which are to be used for labeling and refining an
input major sulcal curve. We assume that every curve in P and Q is
represented as a set of feature points on it.

Given P and Q, our objective is to label the major sulcal curves in P
while pruning their extraneous branches and also removing the
others from P, by following the neuroanatomical conventions
conveyed by Q (Fig. 2). In order to achieve this goal, the most similar
curve in P is chosen for each example data set in Q by spectral
matching (Leordeanu and Hebert, 2005). Being regarded as a major
curve, every chosen input curve receives the corresponding label of
the example data set. The remaining curves in P are regarded as minor
curves and thus discarded. The labeled input curve is also refined by
cutting off its extraneous branches by referring to the example curve
that is most similar among all curves in the set. Since an input major
curve in P shares its label with the curves in the corresponding
example set, there is a one-to-one correspondence between themajor
curves in P and the example data sets in Q. We further incorporate a
simplemulti-resolution scheme for curve representation to accelerate
curve matching. Fig. 3 shows three different sets of sulcal curves: the
al surface using the automated algorithm. The input sulcal curves are then automatically
od. The results are the automatically labeled major sulcal curves on the cortical surface.



Fig. 3. Sulcal curves for left and right hemispheres of a cortical surface: the input sulcal curve set P (left column), the output major sulcal curves (middle column), and the
corresponding ground truth sulcal curves (right column). The upper rows show the sulcal curves in the left hemisphere, while the lower rows exhibit those in the right hemisphere.
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input sulcal curve set P (left column), the resulting output major
sulcal curves (middle column), and the corresponding ground truth
sulcal curves (right column). The top and bottom rows exhibit sulcal
curves in the lateral and medial regions, respectively.

Spectral-based method
In order to find the most similar input sulcal curve in P to each

example data set E in Q, wemeasure the similarity between every pair
of curves which are from P and E, respectively. The pair with the
highest similarity gives the input curve and its corresponding
example sulcal curve in E. We assign the label of the example data
set E to the input curve while simultaneously refining it using this
example curve. We adapt a spectral matching technique in computer
vision to measure the similarity between an input-example curve pair
(Leordeanu and Hebert, 2005). Given a pair of curves (p,q) for p∈P
and q∈E, we estimate their similarity by exploiting the feature points
of these curves and their relationship. Specifically, let p and q be
represented by n and m feature points as follows:

p = p1; p2;: : :;pnf g and q = q1; q2;: : :; qmf g: ð1Þ

For matching two sets of feature points, one could employ
methods such as an iterative closest point (ICP) method (Besl and
McKay, 1992) or a bi-partite graph matching scheme (Cormen et al.,
2001). The ICP method finds correspondences between two sets of
feature points assuming that there is a one-to-one correspondence
between them. Since the ICP method iteratively searches for a local
optimum based on the individual feature similarity, it is difficult to
reflect the global shape of the sulcal curves and thus sensitive to noise
and outliers (Chui and Rangarajan, 2003). Similarly, the bi-partite
graph matching scheme exploits only the similarity between
individual feature points, and thus it is sensitive to noise and outliers,
too. The spectral matching method exploits the feature points
themselves and their relationship as well. Consequently, this method
is not only robust to noise and outliers but also facilitates partial
matching between two sets of feature points.

The affinity of an assignment between two feature points (pi,qj)
measures howwell feature point pi in pmatches qj in q. Letting a=(pi,
qj) and b=(pk,ql) be two distinct assignments, the affinity between
two assignments a and b measures how compatible two pairs of
feature points, (pi,qk) in p and (qj,ql) in q, are with each other. We
construct a matrix M to store the affinities of individual assignments
and their pairwise affinities, where

M a; bð Þ = theaffinity of a; if a = b
the affinity of a; bð Þ; otherwise

�
ð2Þ

We set all affinity values to be nonnegative. As p and q have n and m
feature points, respectively, there are nm assignments. Therefore, we
have nm×nm pairs of assignments, of which the affinity values are
stored in the nm×nm affinity matrix M.

We describe how to compute the affinity value for a pair of feature
points. The major sulcal curves on a human cortical surface are
characterized well by their geometry. We use geometric features to
measure both the individual affinity M(a,a) and the pairwise affinity
M(a,b), a≠b. As all brain volumes were scanned in a common
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stereotaxic coordinate system, geometric information is consistent
across the subjects. In particular, a sulcus is found in a similar region of
each cortical surface. As suggested in (Leordeanu and Hebert, 2005),
we filter out the assignments that are unlikely to be correct.
Specifically, an assignment a=(pi,qj) is rejected if the distance
between two feature points pi and qj is greater than a given threshold
R. Each such rejection reduces the number of rows and that of
columns by one. We set R to 1/6 of the radius of the minimum
bounding sphere of the largest cortex model over all input and
example ones.

We measure an individual affinity M(a,a) using four pieces of
geometric information on feature points pi and qj: positions, sulcal
depths, curvatures, and unit tangent vectors. We adopt a 3D Cartesian
coordinate system to represent a point. The sulcal depth of a point
measures Euclidean distance from the point to the nearest voxel on
the cerebral hull volume (Im et al., 2008a,b). The curvature at a point
on a sulcal curve is estimated by approximating the curve as a
piecewise linear curve. The unit tangent vector is also estimated at the
point along this curve. We collect the information on each feature
point r into an 8D vector F(r) as follows:

F rð Þ = xr; yr; zr ; dr ; κ r; xr ; yr ; zrð Þ; ð3Þ

where (xr,yr,zr),dr,κr, and (x−r,y−r,z−r) represent the position, sulcal
depth, curvature, and tangent vector estimated at the feature point r.
For an assignment a=(pi,qj), we define the displacement vector D(a)
as follows:

D að Þ = F pið Þ− F qj
� �

: ð4Þ

Each element of D(a) is normalized with respect to its maximum
value. LetW be a unit weight vector that gives the importance of every
element in D(a), where every element of W is nonnegative. Then, the
individual affinity M(a,a) is

M a; að Þ = exp− 1
2

jjD að Þjj2W
σ2 ; ð5Þ

where ‖D(a)‖W2 denotes theweighted norm ofD(a) with respect to the
weight vector W, and σ is a user-provided regularization parameter.

In order to measure the pairwise affinity M(a,b),a≠b for two
distinct assignments, a=(pi,qj) and b=(pk,ql), we define the pairwise
displacement vector D(a,b) as follows:

D a; bð Þ = Dq − Dp; ð6Þ

where Dp=F(pk) − F(pi) and Dq=F(ql) − F(qj). Each element of D(a,
b) is also normalizedwith respect to its maximum value. Using D(a,b),
the pairwise affinity M(a,b) is given as follows:

M a; bð Þ = exp− 1
2
jjD a;bð Þjj2W

σ2 : ð7Þ

As explained in Leordeanu and Hebert (2005), we setM(a,b)=0 if
the two assignments a and b do not agree (e.g. D(a,b) is too large) or if
they are incompatible (e.g. i=k and j≠ l). In our experiments, we
empirically set

W =
0:75
3

;
0:75
3

;
0:75
3

;0:05;0:15;
0:05
3

;
0:05
3

;
0:05
3

� �
; and ð8Þ

σ = 0:3:

A total weight of 0.75 is assigned to the first three elements of D(a)
or D(a,b), 0.05 and 0.15 to the fourth and the fifth elements,
respectively, and a total of 0.15 to the last three elements when
evaluating Eqs. (5) and (7). By the way in which we build M, M is
symmetric and nonnegative.
The affinity matrix M is used to choose a subset of consistent
assignments, referred to as C, to measure the similarity between two
curves, p and q. Based on the Raleigh ratio theorem, this subset is built
guided by the principal eigenvector of M while enforcing the one-to-
one correspondence constraint for the chosen assignments. Each
element of the eigenvector gives the confidence of the corresponding
assignment between a pair of feature points. Let L be the set of all
input-example feature point pairs from curves, p and q. We choose the
pair (pi,qj) with the maximum confidence from L as a consistent
assignment in C. This pair together with all conflicting pairs with this
pair is removed from L. Each conflicting pair contains either pi or qj as
its element. For the remaining pairs in L, we repeat this process to
construct the consistent assignment set C until either L becomes
empty or the maximum confidence value for the remaining element
in L is zero. We postprocess the subset C to filter out the assignments
with low confidence values by thresholding. Appendix A presents an
example of constructing the affinity matrix using two simple curves p
and q.

Given the consistent assignment set C between curves p and q,
their similarity A is computed by

A =
X
a;baC

M a; bð Þ: ð9Þ

For every example data set in Q, the most similar curve in P is
chosen in a greedy manner using the similarity value A. To do it, the
spectral matching method selects the most similar curve in P to each
curve in an example set E. Since E consists of 30 curves each of which
is from different subjects, 30 input-example curve pairs are obtained.
Among these pairs, our method chooses the pair with the highest
similarity value to establish a correspondence between the selected
input curves in P and the example data sets in Q. This correspondence
is used to identify and label the major curves in Pwhile discarding the
others. The set C of consistent assignments for curves p and q provides
the subset of feature points in an input curve p that best matches to
that in an example curve q guided by the principal eigenvector of M.
Thus, for the input-example curve pair (p,q), the extraneous branches
of p are pruned by discarding the feature points that do not form any
consistent assignments together with those in q. In theory, this greedy
strategy does not always guarantee a one-to-one correspondence
between the major curves in P and the example data sets in Q. For
example, an input major curve may correspond to two or more
example data sets and vice versa, even though neither was observed
in practice. One may instead adopt a matching algorithm in graph
theory (Dickinson et al., 2001) to guarantee the one-to-one
correspondence after computing the similarity values for all input-
example curve pairs, which imposes a heavy computational overhead.
For efficiency, we took the simple greedy strategy in our experiments
as described above.

Multi-resolution extension
An affinity matrix M is a sparse matrix, which is symmetric and

positive. The dimension of M is mn×mn, where n and m are the
number of feature points in an input sulcal curve p in P and that in
a sulcal curve q in an example data set E of Q, respectively. As
n≥102 and m≥102 on average, the dimension of M is more than
104×104. Although M is a sparse matrix, spectral analysis on this
matrix is computationally demanding because of its high dimen-
sionality. We present a multi-resolution framework for spectral
analysis to filter out input-example curve pairs with low similarities
at its early stages.

A sulcal curve on a cortical surface is composed of a collection of
line segments, each of which has a sequence of feature points
sampled from it. An input sulcal curve p in P has possible
extraneous branches that are connected to the primary curve at
junction points (Seong et al., 2010). Together with the primary



Fig. 4. ITS and LTOS show high variability: Each ground truth curve in the ITS is composed of multiple curve segments (A). The ground truth curves themselves in the LTOS are
classified into two groups of curves with different shapes (B).
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curve those line segments are represented using a tree from which
a set of feature points is sampled. An example sulcal curve q in E is
also represented as a tree with no branches from which a different
set of features is sampled (Fig. 4).1 The proposed spectral-based
method finds the subset of feature points on the input curve p that
best matches to that on the example curve q as explained in
Spectral-based method. That is, our method facilitates partial
matching between the two sets of feature points. Since input-
example feature point correspondences are established regardless of
the connectivity of curves p and q, our method can handle possibly
disconnected sulcal curves. A feature point pi on p is identified to be
on a major sulcal curve if there is the corresponding feature point qj
on q such that (pi,qj) is a consistent assignment in C. We employ a
curvature-adaptive scheme to sample a set of feature points of a
curve. That is, more points are sampled from a higher curvature
curve segment. The normal curvature along the curve is used for
adaptive sampling. A finite difference technique is used to estimate
the curvature assuming that the cortical surface is modeled as a
triangular mesh (Rusinkiewicz, 2004).
1 As exceptional cases the major sulcal curves in the ITS and the PreCS may be
composed of a few disjoint curve segments. Fig. 4 shows an example of the ITS. By
interpreting a gap between curve segments as a long interval with no feature points,
even these exceptional curves can be represented as trees with no branches.
Every curve p in P is sampled adaptively to its curvature to form a
feature point set p0. This set is downsampled in a hierarchical manner
to form a multi-resolution representation of p denoted by (p0,p1,⋯,ps),
where pr,0≤ r≤s becomes successively coarser as r increases. Each
example curve in E is also represented as a hierarchy of feature points
(q0,q1,⋯,qs) in the same fashion. Given the multi-resolution represen-
tation for all curves in P and E, the spectral analysis is performed level
by level from the coarsest level s to the finest level 0. At level s, the
number of input-example curve pairs is large, but the number of
feature points in each set is small to result in the affinity matrix M of
low dimensionality. Thus, the spectral analysis is done very efficiently,
even though the number of input-example curve pairs is large. For
each input-example curve pair (p,q), we build its consistent
assignment set C to compute the similarity A at level s using Eq. (9).
Curve pairs with low similarity values are discarded so that they are
not considered at the next levels as long as each subset E has at least
one example curve to form an input-example pair with an input curve
in P. The same process is applied to each input-example pair of feature
point sets, (ps−1,qs−1) at the next finer level s−1. Although these sets
become denser than their respective sets at the previous level s, the
number of input-example curve pairs is greatly reduced, which still
makes the spectral analysis at this level efficient. This iterative process
is repeated to eventually perform the spectral analysis at the finest
level 0 with a small number of input-example curve pairs. In our
experiments, we set the number of levels in the hierarchy to 4, that is,



Fig. 5. Four levels of a multi-resolution representation: feature points (red spheres) are adaptively sampled from the sulcal curves (green curves) on the input model.
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s=3. As observed in Fig. 5, the number of feature points in each curve
decreases greatly as the level of hierarchy increases.

Extracting sulcal curves from input cortical surface

A sulcal curve on a cortical surface is defined by a set of feature
points that are located along high-curvature fundic regions within a
sulcus. Seong et al. (2010) presented a geometric algorithm for
extracting the sulcal curves on a human cortical surface using an
anisotropic geodesic distance map. We briefly review this algorithm
since an input sulcal curve is extracted by using it. The curve
extraction algorithm consists of three steps: gyral region segmenta-
tion, anisotropic geodesic (AG) distance map construction, and sulcal
curve extraction as illustrated in Fig. 6.

In order to segment gyral regions in the cortical surface Ω, we
measured the sulcal depth at each point in Ω, which is the Euclidean
distance from the vertex to the nearest voxel on the cerebral hull
volume (Im et al., 2008a,b). A vertex in Ω is regarded to be in a gyral
region if its depth is shallower than a threshold. In our study, we used
4.5 mm as a threshold. The segmented gyral regions are colored blue
in Fig. 6(A).

Given a set of gyral regions G, we compute the sulcal regions by
complementing them with respect to the cortical surface Ω. Then, the
problem of computing the AG distance map can be reduced to that of
solving an anisotropic front propagation equation

jjju xð ÞjjF x;
ju xð Þ

jjju xð Þjj
� �

= 1; xaX G

u xð Þ = 0; xaG
ð10Þ

where F is a speed function (Jackowski et al., 2005). We used a
quadratic (bilinear) speed function

F x;
ju xð Þ

jjju xð Þjj
� �

=
ju xð ÞT
jjju xð ÞjjM xð Þ ju xð Þ

jjju xð Þjj ; ð11Þ

where a tensor matrix M(x) is designed in an application-dependent
manner. An AG map contains the minimum arrival time u(x) of the
front to every vertex x on the surface from the gyral points. M(x) is
built based on the normal curvature of the cortical surface such that
Fig. 6. A pipeline for extracting geometric sulcal curves from human cortical surface: the gyra
and the sulcal curve extraction (C).
the front propagation speed F is high on a low curvature region, while
being low on a high curvature region. Fig. 6(B) shows the AGmap for a
cortical surface. Red color represents “far from” the gyral regions,
while blue does “close to” them.

With the AG map constructed, we first take the complement of
the gyral regions G with respect to the cortical surface Ω to identify
the sulcal regions S=Ω\G. A sulcal region may consist of two or
more disconnected subregions. Thus, a sulcal curve consists of
(possibly disconnected) curve segments, each of which is the
skeleton of a subregion and represented by the set of points on the
skeleton:

SC = fwaX jaw1;w2aB Sð Þsuch that AGDist w;w1ð Þ

= AGDist w;w2ð Þ;w1 ≠ w2g;

ð12Þ

where AGDist(u,w) denotes the AG distance between two points u
and w on the surface, and B(S) is the boundaries of sulcal regions
S=Ω\G. The points in SC can be traced guided by the radial flow over
the skeleton (Damon, 2005). The feature points of a sulcal curve
segment are sampled to represent the curve segment as a piecewise
linear curve. Fig. 6(C) shows the resulting sulcal curves.

Expert-provided example sulcal curves

A collection of expert-provided example data sets was obtained
from automatically extracted sulcal curves by manually editing and
labeling these according to neuroanatomic conventions. For expert-
provided example data acquisition, we used 30 ICBM surface data
which consist of 15 men and 15 women (Data acquisition).

We adopt the sulcal curve-based scheme to represent cortical
sulci (Fillard et al., 2007). Sulcal curves lie in high-curvature
fundic regions of the cortical surface to divide the surface into
gyral regions as shown in a classical cytoarchitectonic map of
Brodmann. It is time-consuming to manually trace a sulcal curve
that follows high curvature fundic regions of a sulcus. For
efficiency, we used the recent method in Seong et al. (2010) to
automatically extract the initial sulcal curves that trace valleys of
the sulcal regions. The automatically extracted sulcal curves were
edited by experts based on the neuroanatomical protocol in order
l region segmentation (A), the anisotropic geodesic (AG) distance map construction (B),



Fig. 7. Sulcus variability of a manually labeled example set: the bold curves among sulcal bundles indicate the mean curves. A set of the ground truth curves in each sulcus is acquired
from 30 subjects and visualized on the atlas cortical surface. Since the sulcal curves for each individual subject are mapped onto the atlas model, they may not follow the high
curvature fundic regions on the atlas surface.

149I. Lyu et al. / NeuroImage 52 (2010) 142–157
to provide a set of accurate major sulcal curves for the example
data collection.

Given the automatically extracted sulcal curves from the cortical
surfaces of 30 subjects, an interactive drawing/editing tool in a
surface modeling system was used to manually label and refine
these curves to obtain a set of example sulcal curves. Four
neuroanatomists who were blind on subject sex and age traced
and edited the sulcal curves interactively on the lateral brain surface
(including superior temporal sulcus (STS), inferior temporal sulcus
(ITS), central sulcus (CS), precentral sulcus (PreCS), superior frontal
sulcus (SFS), inferior frontal sulcus (IFS), postcentral sulcus
(PostCS), and lateral temporo-occipital sulcus (LTOS)) in each
hemisphere of a cortex model (see Appendix B for more details
Fig. 8. Variability maps of manually labeled sulcal curves in lateral (upper row) andmedial (b
8, and the lowest value (blue) is less than 2 in the RMS measurement. Note that sulcal curv
on each sulcus). An additional set of sulcal curves was also labeled
manually on the medial surface (including medial temporo-occipital
sulcus (MTOS), cingulate sulcus (CingS), calcarine fissure (CalcF),
and occipito-parietal sulcus (OPS)). The resulting example sulcal
curves were validated by the department of neurology at Samsung
Medical Center, Korea. The example data set consists of a total of 24
types of sulcal curves since they consistently appeared in all 30
normal subjects. Each of these types gives rise to an example data
set with the same label.

Fig. 1 shows both lateral and medial regions of five left
hemispheres with manually labeled major sulcal curves. We used
an inflated surface model for better visualization. In our experi-
ments, original outer cortical surfaces were employed for both
ottom row) regions: The highest value of variability (red) on the color map is more than
es have high variability at their extremes.



Table 1
The variability data of the ground truth curves for each sulcus.

Sulcus STS ITS CS PreCS PostCS SFS

Left 1.87±0.80 2.75±1.93 1.93±0.30 2.59±0.82 2.37±0.80 2.40±0.75
Avg. Var. Right 1.99±0.55 2.95±1.63 1.86±0.27 2.48±0.90 2.38±0.77 2.64±0.74

Sulcus IFS LTOS MTOS CingS CalcF OPS

Left 2.13±0.54 3.52±1.85 2.33±0.68 2.28±0.57 2.35±0.77 2.82±0.74
Avg. Var. Right 2.51±0.84 3.40±1.90 2.46±0.93 2.46±0.79 2.11±0.45 3.74±1.49

Given the ground truth curves in the example data set, the variability of each feature point sampled from the ground truth curve was measured using the squared root of the trace of
the covariance matrix that was estimated at the point using Eq. (16). This table presents the average and standard deviation of the variability for each sulcal curve.
Data: mean±SD (range); unit: mm.

Table 2
The intra- and inter-operator variability (OV) was estimated for expert-provided
example sulcal curves using the FLE given in Eq. (16).

Intra-OV
(expert RJH)

Intra-OV
(expert KMJ)

Inter-OV

1.5ex AverageFLE Left 1.19 mm 0.79 mm 1.22 mm
Right 1.05 mm 1.22 mm 1.48 mm

Two neuroanatomists manually extracted 24 major sulcal curves (12 for each of the left
and right hemispheres) from 5 subjects that were randomly selected among 30 ICBM
data sets. In this table, experts RJH and KMJ represent two neuroanatomists, Jee Hoon
Roh and Min-Jeong Kim, respectively, who manually extracted 24 major sulcal curves.
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automatically extracting the sulcal curves and manually labeling
major sulcal curves.

Variability analysis

Sulcus variability analysis

The accuracy of the proposed method depends greatly on the
expert-provided example data. Even with extensive studies on
variability analysis of sulcal folding patterns in human brains (Ochiai
et al., 2004; Dubois et al., 2008; Cachia et al., 2008; Perrot et al., 2008),
it is still nontrivial to determine the degrees of freedom for
representing a sulcal shape. In this work, we used the example data
to represent the variability of every sulcus by collecting the human
brains of 30 normal subjects. We first describe how to analyze the
variability of the example sulcal curves and then show the results on
variability analysis.

Given a collection Q of expert-provided example data sets, we
analyze the variability of the example sulcal curves in each set. The
quantitative comparison of brain architectures across various subjects
requires a common coordinate system to consistently represent their
spatial features (Evans et al., 1996). To identify the corresponding
regions between subjects, the individual surfaces were aligned to the
surface group template (standard atlas model) based on 2-D surface-
based registration. Note that the atlas-based registration technique
was employed for sulcus variability analysis but not for spectral
matching. The surface group template is unbiased and of high-
resolution with enhanced anatomic details, being constructed by an
iterative registration scheme from a group of 222 subjects' hemi-
spheres (Lyttelton et al., 2007). The vertices of each surface were
registered to the surface group template, and variable sulcal folding
patterns were aligned through a sphere-to-sphere warping algorithm
(Robbins et al., 2004; Lyttelton et al., 2007). The sulcal curves that
were extracted from the aligned cortical surfaces were also mapped
onto the group template. The sulcal curves were then represented as
B-spline curves on the cortical surface using cubic basis functions by
employing a chord length parameterization (Farin, 1988). The
number of control points for each B-spline curve was set to one half
of that of the feature points of the sulcal curve.

For variability analysis, we used the covariance matrix for the
curves in each set. In order to compute this matrix, we start with
describing how to obtain the mean curve of the set. As pointed out in
(Fillard et al., 2007), it is difficult to fully characterize sulcal curves
using local differential properties, due to their high variability across
subjects. In general, these curves do not possess intrinsic shape
characteristics that are consistent over subjects. Therefore we choose,
as the mean curve m, the curve that minimizes the total variance of
the sulcal curves from it. The total variance V is defined as follows:

V =
1

N − 1

XN
i=1

Z 1

0
jjci sð Þ− m sð Þ2jjds; ð13Þ

whereN is the number of example sulcal curves (subjects) in the set, ci

is the example curve for subject i, and s is a curve parameter value. For
efficiency, we approximate the total variance V by discretizing Eq.
(13):

V =
1

N − 1

XN
i=1

XK
j=1

jjci sj
� �

− m sj
� �

jj2; ð14Þ

where sj,j=1,2,⋯,K, are sampled parameter values. We set sl=0 and
sK=1 to represent the start and end points of the curve, respectively.
The mean curve m is obtained by minimizing V with an iterative B-
spline approximation technique (Farin, 1988).

Given the mean sulcal curve of each example data set that
represents one of the 24 major sulcal curves, the covariance matrix
Σ(sj) at parameter sj is estimated as follows:

Σ sj
� �

=
1

N − 1

XN
i=1

ci sj
� �

− m sj
� �h i

ci sj
� �

−m sj
� �h iT

; j = 1;2;: : :;K;

ð15Þ

where [(ci(sj) − m(sj))] is a 3D column vector. Σ(sj) determines the
spatial variance of the feature points sampled at sj from the sulcal
curves in an example data set. Specifically, the squared root of the
trace of each covariance matrix, that is,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace Σ sj

� 	� 	q
measures the

variability at the sampled point with parameter sj (Fillard et al., 2007).
Fig. 1 shows both the lateral and medial regions of five left

hemispheres in the ground truth example data collection. The sulcal
variability is clearly observed even for five subjects in this figure. For
example, the shape of the precentral sulcus (PreCS) varied largely in
the second and fifth subjects. We estimated the variability of the
ground truth sulcal curves for every sulcus: The mean sulcal curve for
each sulcus was first computed using Eq. (14). Fig. 7 shows the mean
curve for every sulcus together with the set of the ground truth curves
for the sulcus acquired from 30 subjects, where the mean curve is
marked in dark color. Only curve bundles in the left hemisphere are
visualized since the similar results are obtained for the right
hemisphere. We mapped the sulcal curves for each individual subject
onto an atlas model for visualization. Given the mean curve for each
sulcus, we estimated the covariancematrix using Eq. (15), fromwhich
the variability of each sampled point on the sulcal curve was
computed as the squared root of the trace of the covariance matrix.
In Fig. 8, color maps represent the variability of the curves for every
sulcus along their mean curve. Blue and red colors depict regions with



2 Please check http://cana.kaist.ac.kr/softwaredata/ for updates.

Fig. 9. The proposed automated method not only assigns neuroanatomical labels to the input sulcal curves but also refines those sulcal curves based on the user-provided example
data: minor sulcal curves are discarded (A), and gaps between sulcal curve segments are filled in and extraneous parts of sulcal curves are cut off (B). Left figures in panels (A) and (B)
show input sulcal curves and right ones represent the refined output curves.
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low and high variability, respectively. In general, each curve shows a
large variability at its extremes. The variability was measured at each
sampled point on a sulcal curve. We computed the average and
standard deviation of those variability values for the sulcal curve.
Table 1 summarizes the variability data for each sulcus.

Operator variability analysis

In practice, the example sulcal curves may contain errors due to
the variability of manual labeling. Therefore, we evaluated the
variability among experts in manual marking of major sulcal curves
using the fiducial localization error (FLE) given in Fitzpatrick et al.
(1998) and Noblet et al. (2006). Suppose that amajor sulcal curve was
manually marked (delineated) N times. Then, every feature point u on
the curve has N values ui, i=1,2,⋯,N. Letting u− be the mean of these
values, the variability at point u is set to

FLE uð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N − 1

XN
i=1

jjui−ujj2
vuut : ð16Þ

In order to evaluate the variability of experts, two of themmanually
labeled 24 major sulcal curves twice (12 for each of the left and right
hemispheres) for 5 subjects which were randomly selected among 30
ICBMdata sets. Equivalently, each sulcal curvewas labeled four times in
total by them. Therefore, N was set to be two and four in Eq. (16) for
intra- and inter-operator variability, respectively. Table 2 summarizes
the average operator variability for the sulcal curves on the left and right
hemispheres. The FLE measures the average deviation of manually
marked sulcal feature points from their mean value for each feature
point, which therefore represents the reliability of themanual marking.
In Table 2, the intra-operator variability of expert KMJ is, for example,
smaller than that of expert RJH for the left hemisphere, which implies
that expert KMJ manually marked the sulcal curves in the left
hemisphere in amore consistentmanner. The inter-operator variability
between the two experts measures how consistently they marked the
sulcal curves with each other. With repeated training on test sets of
cortical surfaces, the maximum allowed operator variability at every
feature point was ensured to be less than the (inter-subject) variability
given in Table 1 (Section 3.1).

Results

Given a cortical surface model, we first extracted input sulcal curves
from a cortical surface using the automatedmethod (Seong et al., 2010)
outlined in Extracting sulcal curves from input cortical surface. Those
input sulcal curves were then represented in a hierarchical manner by
adaptively downsampling the feature points of each sulcal curve. A four
level hierarchywas adopted for themulti-resolution representation of a
curve. A collection of the expert-provided example data sets was
acquired in ICBM data format from 30 cortical surfaces: 24 major sulcal
curves were manually labeled for each cortical surface. The proposed
spectral-based method in the Automatic labeling and refining of major
sulcal curves section was then employed to identify and label the input
major sulcal curves, while refining them according to the anatomical
conventions conveyed by the example data sets.

Inspired by a jackknife/leave-one-out technique, we employed a
similar technique to validate the accuracyof the proposedmethod: Each
subject in turn was taken out of the set of subjects in order to
automatically extract a set of input sulcal curves from the cortical
surface of this subject. Accordingly, the expert-providedexample curves
for the subject were removed from the example data collection Q. The
removed example curves were regarded as the ground truth sulcal
curves for the subject. Unlike in a standard leave-one-out technique, we
used as the input data the set of newly extracted sulcal curves rather
than that of removed example curves. The input sulcal curves are thus
different from those in the example data sets. The error of an output
sulcal curve was estimated as the percentage of the length of the output
curve with respect to that of the respective ground truth curve.

All experiments were performed on a PC equipped with an AMD
Phenom(tm) II X4 905e 2.5 GHz CPU with 4.00 GB memory. For
extracting input sulcal curves from a cortical surface, it took 36 min on
average. The proposed spectral-based method took 17 min on average
in automatically labeling and refining the input sulcal curves of a cortical
surface. We implemented the proposed method using Matlab and we
are planning tomake the Matlab code publicly available.2 We exploited
the four level hierarchy for themulti-resolution representation of sulcal
curve data. The multi-resolution framework effectively coped with the
high dimensionality of the affinity matrix M.

The resulting major sulcal curves accurately traced high curvature
fundic regions in sulci. The accuracy of the automatically refined sulcal
curves was comparable to that of the manual labeled ones. Fig. 3 shows
the sulcal curves for the left and right hemispheres of a cortex model.
The upper and lower rows visualize the lateral and medial regions,
respectively. The left columns and the middle columns in Fig. 3 exhibit
the input sulcal curves and the output sulcal curves, respectively, while
the right ones show the corresponding ground truth curves,whichwere
labeled manually. As observed in this figure, the automatically refined
curves (output curves) are indistinguishable from those of the
corresponding ground truth curves.Weused an inflated cortical surface
model in order to better visualize the sulcal curves. The zoom-in views
of a cortical surface in Fig. 9 show discarded minor curves (Fig. 9(A)),
and filled-in gaps between curve segments of major sulcal curves and
pruned extraneous curve segments (Fig. 9(B)). In Fig. 9(A) and (B), the
left figures show the input sulcal curves and the right ones exhibit the
resulting refined curves.

Fig. 10 depicts the deviation of output curves from their respective
ground truth ones. We define two different types of errors: incomplete
errors and false-positive errors. The former error results from an
incomplete sulcal curveby incorrectlydiscardingapart of an input curve

http://cana.kaist.ac.kr/softwaredata/


Fig. 10. Two different types of errors: incomplete errors (A) and false-positive errors (B). The former error results from an incomplete sulcal curve by incorrectly discarding a part of
an input curve, and the latter comes from an under-refined curve by including an extraneous part of the input curve. In each figure, mis-matched parts are shown in red circles.
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(Fig. 10(A)), and the latter comes from an under-refined curve by
including an extraneous part of the input curve (Fig. 10(B)). In each of
Fig. 10(A) and (B), the left figure gives a ground truth curve.

In order to visualize the error of each output curve, we estimated
the mean of the sulcal curves in the corresponding example set of Q
using Eq. (14) in Sulcus variability analysis. Every output curve was
mapped to the corresponding mean curve by chord length parame-
terization and then the accuracy of the proposed method is visualized
with a color map on an atlas model as shown in Fig. 11. Regions
containing curves with low and high accuracy values are colored red
and blue, respectively. Most output curves exhibited accuracy values
higher than 80%, and themean accuracy values of the curves in the left
and right hemispheres were 84.69% and 84.58%, respectively. False
positive errors were also lower than 8% for most output curves, and
the mean false positive errors of the curves in the left and right
hemispheres were 8.52% and 8.88%, respectively.

Fig. 12 summarizes accuracy statistics. The horizontal axis depicts
accuracy ranges, while the vertical axis represents the percentage of the
output sulcal curves. The left and righthistograms in the top rowshowthe
accuracy statistics of the output curves in the left and right hemispheres,
Fig. 11. Color map of the accuracy of the proposed labeling and refiningmethod for the left an
containing curves with low and high accuracy values are colored red and blue, respectively.
have many feature points with high accuracy, while ITS has points with relatively low accu
respectively,while those in thebottomrowsgive the cumulative statistics
of the same data. As demonstrated in the histograms, nearly 70% of the
output curves were refined with accuracy of better than 80%.

In Fig. 13, the accuracy of output curves is exhibited both for each
sulcus and for each subject. The left and right columns present accuracy
statistics for the left and right hemispheres, respectively. Thehistograms
in the upper row show the accuracy and the false-positive error of
output curves for each sulcus, and the plots in the lower row exhibit the
same quantities for each subject. High accuracy was observed for most
major sulcal curves. Specifically, accuracy of more than 90% was
measured for the central sulcus (CS), the cingulate sulcus (CingS), and
the calcarine fissure (CalcF) in the left hemisphere. In the right
hemisphere, the similar accuracy was measured in the CS, the superior
temporal sulcus (STS) and the CalcF. The error due to false-positive
errors seemed to be inversely proportional to the accuracy of
refinement. For example, false-positive errors were observed relatively
frequently for the inferior temporal sulcus (ITS) and the superior frontal
sulcus (SFS) inbothhemispheres,where the accuracywas relatively low
(58% and 79% on average, respectively). The average accuracy over all
subjectswas 84.64%. Formost subjects, high accuracyvalues (more than
d right hemispheres with lateral (upper row) andmedial (bottom row) regions. Regions
The accuracy is low along a curve with high variability. For example, CS, CalcF, and OPS
racy.



Fig. 12. Accuracy histograms: Top row: accuracy histograms for the left and right hemispheres. Bottom row: cumulative histograms for the same data. The horizontal axis depicts
accuracy ranges, while the vertical axis represents the percentage of the output sulcal curves.
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80%) and low false-positive errors (less than 8%) were observed. Two
subjects showed relatively low average accuracy values (near 75%) and
relatively high false-positive errors (slightly more than 15%).

We finally compared the lengths of identically labeled output
curves with those of their respective ground truth curves. For this
purpose, we estimated themean length and standard length deviation
of the output curves for every sulcus as well as those of the ground
Fig. 13. Accuracy histograms: Top row: accuracy and false-positive error histograms for eac
right figures correspond to left and right hemispheres, respectively.
truth curves. As illustrated in Fig. 14, the differences of these statistics
between the output and ground truth curves for each sulcus were not
significantly large from a statistical standpoint. The contribution to
the length of each sulcal curve due to the false-positive error is
marked red on the top of the respective bar.

In general, our method correctly labels the input sulcal curves while
refining them as illustrated in Fig. 12. The accuracy of the proposed
h sulcus. Bottom row: accuracy and false-positive error plots for each subject. Left and



Fig. 14. Comparison of length statistics for 12 major sulcal curves across 30 subjects. Top and bottom figures correspond to left and right hemispheres, respectively.
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spectral-based method depends on the expert-provided example data.
In fact, ourmethodworkswell as longas there exists a sulcal curve in the
example data that is sufficiently similar to each inputmajor sulcal curve.
This could be achieved by increasing the population of the user-
provided example sulcal curves. That is, a large number of example
curves are likely to increase the accuracy for sulcal curves with high
variability under the assumption that the example curves are correct.
Discussion

As demonstrated in the previous section, the automatically labeled
and refined sulcal curves by our method were similar to their
respective ground truth ones that traced the high-curvature fundic
regions along their valleys within a sulcus. Fig. 3 shows examples of
the output sulcal curves on a cortical surface. Human cortical sulci
have complex folding patterns in brain cortices. Cortical sulci could be
defined differently depending on applications. It is, however, critical
to find their steady patterns in neuroimaging studies. The cortical sulci
can be divided into three groups according to their appearance order
during brain development: the primary, secondary, and tertiary sulci.
The primary sulci appear during the early stage of brain development,
in which the variability is thus low over population (Riviere et al.,
2002; Regis et al., 2005; Perrot et al., 2008). Previous quantitative
studies on intersubject variations revealed that sulcal patterns are
more consistent and invariant in sulcal fundic regions, being more
strongly predetermined during brain development (Lohmann et al.,
1999, 2008). It has been conjectured that the deepest parts of sulci
may not only be ontogenetically important but also related to brain
functions (Hasnain et al., 2001). The sulcal curves along these parts
could provide diagnostic data in discovering brain diseases (Cachia
et al., 2008; Seong et al., 2010). These sulcal curves can also be used to
analyze structural variability of sulci across different brains.
The proposed labeling method identifies the major sulcal curves
from the input sulcal curves in a human cerebral cortex while refining
them. Extracted from the cortical surface based on pure geometric data,
the input sulcal curves may contain small branches or short curve
segments along local valleys near the sulcal regions. Compared to the
primary sulci, both the secondary and tertiary sulci are formed at the
later stages of brain development by sulcal convolution, which causes
the presence of small folds or branches around major sulci. These folds
and branches vary in numbers and locations across different individual
brains. Therefore, discarding minor sulcal curves and pruning extrane-
ous branchesmay beuseful in neuroimaging applications. Our approach
to automated refining of sulcal curves performs this task by exploiting
the collection of expert-provided example data sets, each composed of
only major sulcal curves with an identical label. As shown in Fig. 9, our
method can identify and label theprimary sulcal curves,while removing
extraneous minor curves and branches.

The accuracy of our method is correlated to the variability of the
ground truth sulcal curves in every sulcus. For example, low
variability was observed for the STS and the CS in the lateral region
as well as the CingS and the CalcF in the medial region (Table 1). The
ground truth curves in each of those sulci are consistent, being similar
in shape across the subjects. On the other hand, relatively high
variability was observed in the ITS in the lateral region compared to
the others. Unlike the ground truth curves in sulci such as the STS, the
CS, the CingS and the CalcF, the ground truth curves in the ITS were
not consistent. Most of these curves were composed of multiple curve
segments which were inconsistent in their shapes across the subjects
(Fig. 4(A)). Exceptionally, high accuracy was observed in some sulcal
curves with high variability such as the LTOS in the lateral region and
the OPS in the medial region. The example curves in the LTOS were
classified into two groups of curves with different shapes (Fig. 4(B)).
However, even with their high variability, a similar example sulcal
curve to an input LTOS curve can be found from one of the two groups



155I. Lyu et al. / NeuroImage 52 (2010) 142–157
in the example data set, which resulted in high accuracy. Similarly, the
OPS in the medial region also showed high accuracy.

Figs. 11 and 8 together further demonstrate the correlation of the
accuracy of the proposed method with the variability for each sulcus.
Note that the identical sulcal regions in both figures received the same
colors. Regions with low accuracy and high variability are colored red,
while those with high accuracy and low variability are colored blue.
For example, the ITS showed large incomplete errors (Fig. 11), and the
variability for these sulci was also relatively large (Fig. 8). On the other
hand, the CS and the CalcF exhibited low variability, for which our
method worked with high accuracy.
Fig. 15. An example to show an affinity matrix M using two simple sulcal curves: input an
computed for nine possible assignments ak,k=1,2,⋯,9, which are stored in the affinity matr
confidence of each assignment. In this example, we choose three pairs (p1,q3),(p2,q2) and (
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Table 3
Labels and characteristics for major sulcal curves of human cerebral cortex.

Symbols Labels Locations Remarks

STS Superior temporal
sulcus

Lateral Continuous or 2–3 separate
segments

ITS Inferior temporal
sulcus

Lateral 2–3 separate segments but
continuous at times

CS Central sulcus Lateral Usually continuous
PreCS Precentral sulcus Lateral 2–3 separate segments
PostCS Postcentral sulcus Lateral Continuous or 2–3 separate

segments
SFS Superior frontal sulcus Lateral Continuous or discontinuous
IFS Inferior frontal sulcus Lateral Highly likely not continuous
LTOS Lateral temporo-

occipital sulcus
Lateral 2–3 separate segments but

continuous at times
MTOS Medial temporo-

occipital sulcus
Medial Continuous or 2 separate segments

CingS Cingulate sulcus Medial Continuous or 2 separate segments
CalcF Calcarine fissure Medial Usually continuous
OPS Occipito-parietal sulcus Medial Usually continuous
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Appendix A

In this appendix, we present an example of constructing the
affinity matrix M using two simple sulcal curves. Fig. 15 shows an
input and an example sulcal curves, p and q, respectively. The 8D
vector F is constructed at each of those feature points using Eq.
(3). Consider three feature points pi,i=1,2,3, and qj,j=1,2,3 on the
sulcal curve p and q, respectively. Those feature points give rise to
nine possible assignments ak,k=1,2,⋯,9 (Fig. 15(C)): a1=(p1,q1),
a2=(p1,q2), a3=(p1,q3), a4=(p2,q1), a5=(p2,q2), a6=(p2,q3), a7=
(p3,q1), a8=(p3,q2), and a9=(p3,q3). The individual affinity values
M(a,a) are computed using Eq. (5), and stored along the diagonal
of the affinity matrix M (Fig. 15(C)). The pairwise affinity values M
(a,b),a≠b are computed using Eq. (7). Eq. (7) computes the
pairwise symmetric affinity values, which results in a symmetric
matrix M. As explained in the Spectral-based method section;
however, the pairwise affinity value M(a1,a2) is set to zero since
assignments a1 and a2 are incompatible, that is, p1=p1 and
q1≠q2. Similarly, we set M(a,b)=0 for all incompatible pairs of
assignments a and b. We then compute the principal eigenvector
of the affinity matrix M (Fig. 15(C)). Each element of the
eigenvector gives the confidence of the corresponding assignment
between a pair of feature points. Let L be the set of all input-
example feature point pairs: L={(p1,q1),(p1,q2),(p1,q3),(p2,q1),(p2,
q2),(p2,q3),(p3,q1),(p3,q2),(p3,q3)}. In order to construct the consis-
tent assignment set C, we first choose the pair a7=(p3,q1) with
the maximum confidence from L as an element of C (Fig. 15(C)).
The pair (p3,q1) together with all conflicting pairs with this pair is
removed from L, which results in L={(p1,q2),(p1,q3),(p2,q2),(p2,q3)}
and C={(p3,q1)}. For the remaining pairs in L, we repeat this
process to choose the pair a3=(p1,q3), which makes L={(p2,q2)}
and C={(p3,q1),(p1,q3)}. Finally, what is left in L is the pair a5=
(p2,q2) so as to obtain L=Ø and C={(p3,q1),(p1,q3),(p2,q2)}. We
terminate this process since L becomes empty. Given the
consistent assignment set C, the similarity A between two curves
p and q is computed using Eq. (9):

A =
X
a;baC

M a; bð Þ

= M a7; a7ð Þ + M a3; a3ð Þ + M a5; a5ð Þ + M a7; a3ð Þ + M a7; a5ð Þ + M a3; a5ð Þ
= 0:9265 + 0:9101 + 0:9031 + 0:7332 + 0:9506 + 0:7156
= 5:1391:

Appendix B

Table 3 presents themajor sulcal curves of a human cerebral cortex
that we used and their characteristics.
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