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Abstract
Dose planning for Gamma Knife radiosurgery (GKRS) uses the magnetic resonance (MR)-based tissue maximum ratio 
(TMR) algorithm, which calculates radiation dose without considering heterogeneous radiation attenuation in the tissue. 
In order to plan the dose considering the radiation attenuation, the Convolution algorithm should be used, and additional 
radiation exposure for computed tomography (CT) and registration errors between MR and CT are entailed. This study 
investigated the clinical feasibility of synthetic CT (sCT) from GKRS planning MR using deep learning. The model was 
trained using frame-based contrast-enhanced T1-weighted MR images and corresponding CT slices from 54 training sub-
jects acquired for GKRS planning. The model was applied prospectively to 60 lesions in 43 patients including benign tumor 
such as meningioma and pituitary adenoma, metastatic brain tumors, and vascular disease of various location for evaluating 
the model and its application. We evaluated the sCT and compared between treatment plans made with MR only (TMR 10 
plan), MR and real CT (rCT; Convolution with rCT [Conv-rCT] plan), and MR and synthetic CT (Convolution with sCT 
[Conv-sCT] plan). The mean absolute error (MAE) of 43 sCT was 107.35 ± 16.47 Hounsfield units. The TMR 10 treatment 
plan differed significantly from plans made by Conv-sCT and Conv-rCT. However, the Conv-sCT and Conv-rCT plans were 
similar. This study showed the practical applicability of deep learning based on sCT in GKRS. Our results support the pos-
sibility of formulating GKRS treatment plans while considering radiation attenuation in the tissue using GKRS planning 
MR and no radiation exposure.
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1  Introduction

Gamma Knife radiosurgery (GKRS) is a single-treatment 
irradiation session of a cranial lesion using multiple highly-
focused gamma-ray beams produced by 60Co sources. GKRS 
is being used as a treatment modality for various lesions such 
as benign and malignant brain tumors, vascular diseases, 
functional diseases, and some of ocular diseases. As it is a 
high-energy treatment for the brain, accurate irradiation is 
important. Early GKRS planning was performed with a non-
imaging-based stereotactic planning system called KULA 
using with X-ray, angiography, and computed tomography 
(CT) [1]. Since it was designed in the pre-computerized 
imaging era, it was more focused on geometric accuracy 
and had only limited capacity for dosimetry. This was fol-
lowed by the Leksell GammaPlan® software, with advanced 
graphic features and a sophisticated multi-parameter system 
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[1]. The GammaPlan®, still in use today, calculates the dose 
based on the tissue maximum ratio (TMR) algorithm that 
considers the head geometry only.

Once magnetic resonance (MR) imaging was developed 
and used for clinical applications, with the advantages of 
soft-tissue contrast and target delineation, it has also been 
applied to GKRS planning. In addition to the above advan-
tages, MR can image the geometry of the head; therefore, for 
decades, MR-only workflow was used for GKRS planning. 
However, the TMR algorithm assumes the patients head is of 
even water-equivalent density and does not consider the radi-
ation attenuation in the bone. For more precise treatment, 
the need to consider the patient tissue heterogeneity during 
planning has emerged. Hence, the Convolution algorithm 
was developed several years ago [2]. The treatment plan with 
Convolution algorithm has a 6–15% difference in the maxi-
mum dose compared to the plan with TMR algorithm [3, 4]. 
However, CT is required to use it, and due to the additional 
radiation exposure, time, costs, patients inconvenience, and 
the CT/MR registration error of up to 2 mm, the Convolution 
algorithm is not widely used [5].

Since CT and MR have their respective advantages, sev-
eral studies have reported skull synthetic CT (sCT) from 
MR [6, 7]. Recent studies have applied deep learning to 
sCT from MR, showing excellent results in terms of time 
and accuracy [6–10]. Studies applying sCT made with deep 
learning to clinical practice for brain have recently been 
conducted, but few have used it for GKRS [11–14]. In this 
study, we investigated the applicability of sCT made with 
deep learning in dose planning for GKRS, which requires 
high energy with submillimeter accuracy.

2 � Materials and methods

2.1 � CT/MR imaging protocol for Gamma Knife 
radiosurgery

MR images for GKRS planning included gadolinium 
contrast contrast-enhanced T1-weighted images and 
T2-weighted images. MR images were acquired with a 1.5 T 
Philips Achieva dStream (Philips Medical Systems, Best, 
Netherlands). Contrast-enhanced T1-weighted images were 
captured with a slice thickness of 1.5 mm from the fora-
men magnum level to the vertex using a T1-weighted 3D 
gradient recalled echo sequence with contrast agent (echo 
time, 4.6 ms; repetition time, 25 ms; flip angle, 30º; voxel 
size, 1 × 1 × 1 mm3). The images required for each disease 
were additionally acquired. CT images were acquired as 
needed for planning, such as when MR distortion correc-
tion was required or when implants generated MR artifacts. 
CT images were acquired on GE LightSpeed VCT (GE 

Healthcare Technologies, Waukesha, WI) with a tube volt-
age of 100 kVP and slice thickness of 1 mm.

2.2 � Generation of a deep learning model for sCT

The model was trained using all MR image slices with the 
corresponding CT slices from MR/CT pairs of the 54 train-
ing group subjects, acquired for GKRS planning in our 
institution. The imaging data was retrospectively reviewed. 
MR images for deep learning were contrast-enhanced 
T1-weighted images. Generative Adversarial Networks 
(GAN)-based model was used for sCT generation.

2.2.1 � Image registration

Although the same patients were imaged, the CT and MR 
images were not aligned because the patient moved or due to 
modality differences. The image registration process for fit-
ting the CT to MR images was performed using SimpleITK 
[15–17]. At the first rough registration stage, the centers of 
the two images were aligned. The center of the MR image 
was set as the center of rotation through Euler registration. 
A B-Spline transformation based on Mattes Mutual Infor-
mation was then applied for the fine registration [18–20]. A 
gradient descent optimizer with a learning rate of 1.0 was 
used to find the optimal terminal condition for 100 iterations.

2.2.2 � Image preprocessing

After the registration process, the CT and MR images were 
resampled at 1 × 1 × 1 mm isotropic resolution. The MR 
images underwent Z-score normalization using the mean 
and standard deviation obtained from the training dataset to 
stabilize the training process. The Hounsfield unit (HU) val-
ues of the CT images were normalized to values between 0 
and 1 using min–max scaling, with minimum and maximum 
values of –1024 HU and 1800 HU, respectively considering 
the HU of the skull. The CT and MR images were resized 
to 512 × 512 pixel.

2.2.3 � sCT generation

Pix2Pix is a deep neural network that shows distinguished 
performance in paired image-to-image translation [21]. 
All settings followed the original experiments of Pix2Pix 
except for data augmentation [21] (Fig. 1). Random rotation 
(± 20 degrees), random scaling (× 0.9–1.1), random transla-
tion (± 0.1 pixels), and random horizontal flip were applied 
to prevent mode collapse and overfitting. The final model 
received preprocessed MR images as input and generated its 
corresponding sCT images. The network was implemented 
using Pytorch 1.4. Adam optimizer with a learning rate of 
0.0002 and a batch size of ten was used for optimization. A 
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single NVIDIA GeForce GTX 1080 Ti GPU was used for 
100 epochs. The memory size of GPU was sufficient since 
2D slices were used as an input.

2.2.4 � sCT evaluation

The accuracy of the sCT images was measured by voxel-
wise mean absolute error (MAE) and structural similarity 
index measure (SSIM) against the real CT images. The MAE 
and SSIM could be calculated as follows:

and

where n is the total number of voxels, μI and σI are the mean 
and standard deviation of image I, and the constants were 
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c1 = {0.01 × [1,800 – (– 1024)]}2 and c2 = {0.03 × [1,800 
– (– 1024)]}2. After confirming the quality of the generated 
CT images using the above evaluation metrics, the GKRS 
planning was performed.

2.3 � Applying the learning model for preparing 
the GKRS treatment plan

The study was conducted on patients scheduled to be 
treated by GKRS who had to undergo MR and CT imag-
ing for planning. Treatment indications included benign 
tumors such as meningioma (MNG), vestibular schwan-
noma (VS), and pituitary adenoma (PA), cerebrovascu-
lar malformations such as arteriovenous malformation 
(AVM), and metastatic brain tumors larger than 1 cm3. 
The Institutional Review Board of our hospital approved 
the study before starting it. Written informed consent was 
obtained from all participants.

Fig. 1   A schematic illustration of the study. sCT, synthetic computed tomography; ReLU, Rectified linear unit; Conv, Convolution; Norm, nor-
malization
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2.3.1 � Establishment of the GKRS treatment plan

The GKRS plan was created by the GammaPlan® software 
program (Version 10.1, Elekta AB, Stockholm, Sweden). 
Importing the image data, skull measurement, and contour-
ing of the target to be treated were performed in the usual 
way. The GKRS shot plan was calculated and optimized 
based on the TMR 10 algorithm (a TMR algorithm embed-
ded in GammaPlan®, Version 10.1), and the plan for each 
lesion was established and adjusted manually by a single 
surgeon (WSC) with 15 years of experience in GKRS plan-
ning. No limit was set for the number of shots or the allowed 
collimator combination. All targets were prescribed to the 
50% isodose line.

2.3.2 � Dosimetric analysis

The treatment plan was recalculated with a Convolution 
algorithm using real CT (rCT) and sCT images (Fig. 1). No 
adjustment was implemented. Treatment plans were evalu-
ated prospectively for each lesion. The three treatment plans 
(TMR 10 plan; Convolution with rCT [Conv-rCT] plan; 
Convolution with sCT [Conv-sCT] plan) were compared for 
the following evaluation elements of the GKRS treatment 
plan: coverage (proportion of the target volume covered by 
the prescription isodose), Paddick conformity index (PCI; 
how adequately the target was covered by treatment), gradi-
ent index (GI; the ratio of the volume enclosed by half of the 
prescription isodose), and beam-on time (BOT).

2.4 � Statistical analysis

Statistical analysis was performed with JMP, Version 9.4 
(SAS Inc., Cary, NC, USA). The three treatment plans for 
each patient were compared using a linear mixed model, 
and post-hoc analysis was performed with Bonferroni’s 
method. Differences with a p-value smaller than 0.05 were 
considered statistically significant.

3 � Results

The study was performed from August to December 2020 
on 60 lesions of 43 patients. These consisted of eight 
patients with MNG (13.3%), seven with AVM (11.7%), six 
with PA (10.0%), two with VS (3.4%), and 37 with meta-
static brain tumors (61.7%). MNG was variously located, 
including three lesions of the frontal area. AVM was 
primarily located in the temporal lobe. Metastatic brain 
tumors were distributed in the cerebellum, brain stem, and 
cerebrum, including ten lesions in the parietal lobe and 
nine in the frontal lobe. The average distance from the 
vertex to the center of the lesion was 82.1 ± 31.9 mm, and 
the average target volume was 4.04 ± 3.99 cm3. Twelve 
lesions were treated by three fractions, and the rest were 
treated by a single fraction. Details on the patients and 
lesions are shown in Table 1.

Table 1   Characteristics and treatment plan parameters for the 60 lesions

Characteristics Value (n) Volume (cm3) Location (n) Fractionation Prescription dose (Gy)

Patients 43 (F 27, M 16)
Lesions 60 4.04 ± 3.99
Meningioma 8 2.24 ± 1.52 Frontal

Ant. Skull base
Petrous
Tocular
Tentorium

3
2
1
1
1

Three fractions
Single fraction

3
5

6.7 ± 0.0
14.2 ± 0.4 (14.0–15.0)

Vestibular schwannoma 2 2.11 ± 1.29 – Three fractions
Single fraction

2
0

6.6 ± 0.2 (6.4–6.7)
-

Pituitary adenoma 6 4.45 ± 4.58 – Three fractions
Single fraction

3
3

8.4 ± 1.0 (7.5–9.5)
25.0 ± 0.0

Arteriovenous malformation 7 7.46 ± 6.64 Temporal
Parietal
Thalamus
Brain stem

4
1
1
1

Three fractions
Single fraction

0
7

-
16.9 ± 1.1 (16.0–18.0)

Metastatic brain tumor (≥ 1 cm.3) 37 3.82 ± 3.47 Frontal
Parietal
Occipital
Temporal
Cerebellum
Brain stem

9
10
6
4
5
3

Three fractions
Single fraction

4
33

8.7 ± 0.5 (8.0–9.0)
20.4 ± 1.1 (18.0–22.0)
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3.1 � Evaluation of the sCT images

sCT images were successfully generated for all patients. It 
took an average of 26.28 s to generate a CT image from an 
MR image, including the entire preprocessing operation. An 
example of sCT is presented in Fig. 2. Quantitatively, for the 
whole head region, the proposed method achieved an aver-
age MAE and SSIM of 107.35 ± 16.47 HU and 0.57 ± 0.06, 
respectively.

3.2 � Dosimetric evaluation

The three treatment plans differed significantly in the cover-
age, PCI, GI, and BOT (p < 0.001 for all). Post-hoc analy-
sis found differences between the TMR 10 and Conv-sCT 
plans in all four parameters (coverage, PCI, GI, and BOT; 
p < 0.001 for all), and between the TMR 10 and Conv-rCT 
plans (coverage, p = 0.023; p < 0.001 for PCI, GI, and BOT). 
However, no difference was found between the Conv-sCT 
and Conv-rCT plans (p > 0.999 for coverage, PCI, and GI; 
BOT, p = 0.742; Figs. 3, 4, Table 2).

4 � Discussion

CT imaging has historically been used as the primary source 
of imaging data for planning external radiation therapy. The 
CT images provide an accurate representation of the patient 
geometry and have the advantage that the CT values can be 
directly translated to electron densities for radiation dose 
calculation [6]. For this reason, radiation therapy is based on 
CT. However, since GKRS is a procedure that deliver higher 
energy and geometrical accuracy is more important than 

attenuation, GKRS planning was established based on MR 
without considering tissue heterogeneity until the 2000s. 
These planning are not problematic in most cases, but these 
might result in the radiation reaching the incorrect location 
with an incorrectly calculated dose and, consequently, deliv-
ering insufficient treatment or causing normal tissue toxicity.

Recently, in order to treat more precisely, the Convolution 
algorithm that considers the electron map was introduced. 
Since MR cannot provide the electron density information 
needed for accurate dose calculation, a CT scan is required 
for its application. However, additional radiation exposure 
for CT is bound to be risky to the patients. Besides, clini-
cal flow complexities and CT/MR registration errors further 
complicate the situation.

Efforts have been made to extract CT data from MR 
images, including atlas-based, voxel-based, and hybrid 
methods [22–24]. In the past decade after the advent of arti-
ficial intelligence (AI), researchers started applying AI to 
this field as well. Due to the rigidity of the skull and rela-
tively little movement of surrounding structures, the regis-
tration and learning of brain MR/CT pairs has advantages 
over other organs, and many researchers have attempted to 
apply AI to skull CT. Han first reported the synthesis of 
skull CT images by applying deep learning to MR images 
in 2017 [6]. CT images were synthesized from T1-weighted 
MR images using the convolutional neural network (CNN) 
method, and the quality of the CT images was better than the 
conventional synthesis method with an MAE of 84.8 HU. 
Afterwards, studies using GAN, which has strength in image 
synthesis compared to other generative models were con-
ducted [25]. Nie et al. and Emami et al. showed promising 
results with an MAE of 92–95 HU in the skull by applying 
a GAN-based method [26, 27]. Other studies using various 

Fig. 2   An example of an axial (a) and sagittal (b) slice of a magnetic resonance imaging (MRI), real computed tomography (rCT), synthetic CT 
(sCT), and the difference map between rCT and sCT in a metastatic brain tumor patient
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other deep learning methods such as dense cycle GAN or 
U-net also reported good performance results [7, 8]. The MR 
sequences used for CT synthesis were various depending on 
the studies; T1-weighted images with or without contrast, 
or T2-weighted images. In addition, Dixon, ultrashort echo 
time (UTE) images, and other sequences that represented 
bones better are used for better sCT results [6, 9, 10, 28]. As 

a result, sophisticated sCT images with an MAE of less than 
50 HU have been produced currently.

As it is important to make high-performance synthetic 
CT, its clinical application is also important. GKRS, one 
of the representative modality of treating cranial lesions, 
is often performed frame-based for higher accuracy, and 
for planning MR, 1.5 T MR is preferred with less image 

Fig. 3   Comparison between the Convolution with real CT (Conv-
rCT) and TMR 10 plans, and between the Conv-rCT and Convolu-
tion with synthetic CT (Conv-sCT) plans in a torcular meningioma 

patient. Conv-rCT plan (orange/blue line) was overlaid with TMR 
10 plan (yellow/green line at upper row) or Conv-sCT plan (yellow/
green line at lower row)

Fig. 4   Comparison between the TMR 10, Convolution with real CT 
(Conv-rCT), and Convolution with synthetic CT (Conv-sCT) plans. 
**p < 0.05, *** p < 0.001. TMR, Tissue maximum ratio; rCT, real 

computed tomography; sCT, synthetic computed tomography; Conv, 
Convolution; PCI, Paddick Conformity Index; GI, Gradient Index; 
BOT, Beam-on time; ns, non-significant
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distortion than 3 T MR. Although 3 T MR has better image 
contrast between tissues and has been widely used in previ-
ous studies for more sophisticated images, our study used 
1.5 T GKRS planning MR images with a metal frame imple-
mented, which are actually used for GKRS. Since metals 
form artifacts around in MR, it may cause difficulties in the 
image learning process and may result in poor sCT results. 
For this reason, our learning model seems to produce subop-
timal results compared to other studies, but it is meaningful 
in that it was applied to the clinical practice without addi-
tional MR implementation and that even sCT with limited 
performance was sufficient for GKRS planning, showing 
indistinguishable GKRS plan results from the results with 
rCT.

So far, the clinical application of sCT made from MR 
has mainly been in the field of radiation therapy. Dinkla 
et al. retrospectively studied applying the CNN-based model 
using T2-weighted MR images to radiation therapy in head 
and neck cancer patients, and reported MAE of 75 ± 9 HU 
and less than 1% of mean dose difference in the high dose 
region of over 90% of the prescribed dose [11]. Lerner et al. 
synthesized CT using a commercial program with Dixon 
MR images for 20 brain tumor patients and reported MAE 
of 62.2 ± 4.1 HU and less than 0.2% of dose differences in 
parameters evaluated for the targets and organs at risk fol-
lowing volumetric modulation arc therapy (VMAT) plan 
study [29]. These studies have shown the potential of sCT 
as an alternative to rCT for radiation therapy.

GKRS is the procedure that deliver a higher dose than 
radiation therapy, and small differences in sCT can lead to 
larger dose difference. However, we found no difference 
in the coverage, PCI, GI, and BOT between the Convolu-
tion-based treatment plans formulated with sCT or rCT 
images. These results support the feasibility of replacing 
the rCT with sCT for GKRS planning. There was a differ-
ence between the Convolution algorithm CT- and TMR 
10-based treatment plans. This result was consistent with 

previous studies showing that Convolution-based and 
TMR 10-based treatment plans differed by 6–15% of the 
standard error of maximum dose [3, 4]. This means that 
when the skull attenuation is considered, there may be a 
difference in the therapeutic dose for the target compared 
to when not considered.

Although the Convolution algorithm was developed 
several years ago for more accurate treatment, it has not 
been widely used to date, mainly due to the additional 
CT scan and CT/MR registration error. By showing that 
planning with sCT in GKRS was similar to that with rCT, 
our study showed that the planning considering tissue het-
erogeneity is possible using sCT made by deep learning 
with only MR. This has lowered the barrier into planning 
that calculate radiation attenuation in tissue by resolving 
the difficulty and complexity associated with the addi-
tional implementation of CT. By applying this method, it 
is expected that more accurate dose calculation and treat-
ment considering radiation attenuation in GKRS will be 
possible without additional inconvenience in the future.

This study has several limitations. First, there is a limit 
to the generality of the deep learning model. MR images 
vary significantly across scanner types and a model trained 
on data from one scanner could not be directly applica-
ble to data from a different scanner. Second, the quality 
of our sCT is not state-of-the-art. Therefore, additional 
techniques to improve inter-slice consistency are required 
for better bone performance [30]. Third, the Convolution 
algorithm itself may have limitation. Although the algo-
rithm is designed to reflect the electron density, there may 
be differences from the actual dose.

Author contributions  HK and WSC designed the study. HK and DMC 
created the model. WSC established the treatment plan. SHP, IJ and 
KWC converted the treatment plan and collected the data. DMC and 
HK analyzed and interpreted the CT data. SHP, HHJ, JWC and WSC 
analyzed and interpreted the GKRS data. SHP and DMC drafted the 
work, and all author reviewed the manuscript.

Table 2   Coverage, Paddick Conformity Index, Gradient Index and Beam-on time of the TMR 10, Convolution with real CT (Conv-rCT), and 
Convolution with synthetic CT (Conv-sCT) plans

SD, Standard deviation; TMR, Tissue maximum ratio; rCT, real computed tomography; sCT, synthetic computed tomography; Conv, Convolu-
tion

Mean ± SD p-value

TMR 10 Conv-rCT Conv-sCT Overall TMR10 vs. 
Conv-rCT

TMR10 vs. 
Conv-sCT

Conv-rCT 
vs. Conv-
sCT

Coverage 0.97 ± 0.04 0.96 ± 0.04 0.96 ± 0.04  < 0.001 0.023  < 0.001  > 0.999
Paddick Conformity Index 0.71 ± 0.13 0.72 ± 0.13 0.71 ± 0.13  < 0.001  < 0.001  < 0.001  > 0.999
Gradient Index 2.77 ± 0.18 2.74 ± 0.19 2.75 ± 0.20  < 0.001  < 0.001  < 0.001  > 0.999
Beam-on time 82.45 ± 52.85 85.86 ± 55.62 86.04 ± 55.48  < 0.001  < 0.001  < 0.001 0.742
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