Detailed Information

Cited 5 time in webofscience Cited 4 time in scopus
Metadata Downloads

Notch Signaling Controls Oligodendrocyte Regeneration in the Injured Telencephalon of Adult Zebrafish

Authors
Kim, Hwan KiLee, Dong-WonKim, EunmiJeong, InyoungKim, SuhyunKim, Bum-JoonPark, Hae-Chul
Issue Date
Dec-2020
Publisher
한국뇌신경과학회
Keywords
Neural stem cells; Oligodendroglia; Regeneration; Telencephalon; Wounds and injuries; Zebrafish
Citation
Experimental Neurobiology, v.29, no.6, pp 417 - 424
Pages
8
Indexed
SCIE
SCOPUS
KCI
Journal Title
Experimental Neurobiology
Volume
29
Number
6
Start Page
417
End Page
424
URI
https://scholarworks.korea.ac.kr/kumedicine/handle/2020.sw.kumedicine/51801
DOI
10.5607/en20050
ISSN
1226-2560
2093-8144
Abstract
The myelination of axons in the vertebrate nervous system through oligodendrocytes promotes efficient axonal conduction, which is required for the normal function of neurons. The central nervous system (CNS) can regenerate damaged myelin sheaths through the process of remyelination, but the failure of remyelination causes neurological disorders such as multiple sclerosis. In mammals, parenchymal oligodendrocyte progenitor cells (OPCs) are known to be the principal cell type responsible for remyelination in demyelinating diseases and traumatic injuries to the adult CNS. However, growing evidence suggests that neural stem cells (NSCs) are implicated in remyelination in animal models of demyelination. We have previously shown that olig2(+) radial glia (RG) have the potential to function as NSCs to produce oligodendrocytes in adult zebrafish. In this study, we developed a zebrafish model of adult telencephalic injury to investigate cellular and molecular mechanisms underlying the regeneration of oligodendrocytes. Using this model, we showed that telencephalic injury induced the proliferation of olig2(+) RG and parenchymal OPCs shortly after injury, which was followed by the regeneration of new oligodendrocytes in the adult zebrafish. We also showed that blocking Notch signaling promoted the proliferation of olig2(+) RG and OPCs in the normal and injured telencephalon of adult zebrafish. Taken together, our data suggest that Notch-regulated proliferation of olig2(+) RG and parenchymal OPCs is responsible for the regeneration of oligodendrocytes in the injured telencephalon of adult zebrafish.
Files in This Item
There are no files associated with this item.
Appears in
Collections
3. Graduate School > Biomedical Research Center > 1. Journal Articles
4. Research institute > Zebrafish Translational Medical Research Center > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Hae Chul photo

Park, Hae Chul
Graduate School (Biomedical Research Center)
Read more

Altmetrics

Total Views & Downloads

BROWSE