Detailed Information

Cited 3 time in webofscience Cited 4 time in scopus
Metadata Downloads

Accuracy of two deep learning-based reconstruction methods compared with an adaptive statistical iterative reconstruction method for solid and ground-glass nodule volumetry on low-dose and ultra-low-dose chest computed tomography: A phantom studyopen access

Authors
Kim, CherryKwack, ThomasKim, WooilCha, JaehyungYang, ZepaYong, Hwan Seok
Issue Date
Jun-2022
Publisher
Public Library of Science
Citation
PLoS ONE, v.17, no.6
Indexed
SCIE
SCOPUS
Journal Title
PLoS ONE
Volume
17
Number
6
URI
https://scholarworks.korea.ac.kr/kumedicine/handle/2021.sw.kumedicine/61316
DOI
10.1371/journal.pone.0270122
ISSN
1932-6203
1932-6203
Abstract
No published studies have evaluated the accuracy of volumetric measurement of solid nodules and ground-glass nodules on low-dose or ultra-low-dose chest computed tomography, reconstructed using deep learning-based algorithms. This is an important issue in lung cancer screening. Our study aimed to investigate the accuracy of semiautomatic volume measurement of solid nodules and ground-glass nodules, using two deep learning-based image reconstruction algorithms (Truefidelity and ClariCT.AI), compared with iterative reconstruction (ASiR-V) in low-dose and ultra-low-dose settings. We performed computed tomography scans of solid nodules and ground-glass nodules of different diameters placed in a phantom at four radiation doses (120 kVp/220 mA, 120 kVp/90 mA, 120 kVp/40 mA, and 80 kVp/40 mA). Each scan was reconstructed using Truefidelity, ClariCT.AI, and ASiR-V. The solid nodule and ground-glass nodule volumes were measured semiautomatically. The gold-standard volumes could be calculated using the diameter since all nodule phantoms are perfectly spherical. Subsequently, absolute percentage measurement errors of the measured volumes were calculated. Image noise was also calculated. Across all nodules at all dose settings, the absolute percentage measurement errors of Truefidelity and ClariCT.AI were less than 11%; they were significantly lower with Truefidelity or ClariCT.AI than with ASiR-V (all P<0.05). The absolute percentage measurement errors for the smallest solid nodule (3 mm) reconstructed by Truefidelity or ClariCT.AI at all dose settings were significantly lower than those of this nodule reconstructed by ASiR-V (all P<0.05). Furthermore, the lowest absolute percentage measurement errors for ground-glass nodules were observed with Truefidelity or ClariCT.AI at all dose settings. The absolute percentage measurement errors for ground-glass nodules reconstructed with Truefidelity at ultra-low-dose settings were significantly lower than those of all sizes of ground-glass nodules reconstructed with ASiR-V (all P<0.05). Image noise was lowest with Truefidelity (all P<0.05). In conclusion, the deep learning-based algorithms were more accurate for volume measurements of both solid nodules and ground-glass nodules than ASiR-V at both low-dose and ultra-low-dose settings.
Files in This Item
There are no files associated with this item.
Appears in
Collections
4. Research institute > Institute for Evidence-based Medicine > 1. Journal Articles
5. Others > Medical Science Research Management Center > 1. Journal Articles
2. Clinical Science > Department of Radiology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yang, Zepa photo

Yang, Zepa
Research Institute (Institute for Evidence-based Medicine)
Read more

Altmetrics

Total Views & Downloads

BROWSE