Detailed Information

Cited 10 time in webofscience Cited 11 time in scopus
Metadata Downloads

Role of an unclassified Lachnospiraceae in the pathogenesis of type 2 diabetes: a longitudinal study of the urine microbiome and metabolitesopen access

Authors
Kim, KangjinLee, SanghunPark, Sang-ChulKim, Nam-EunShin, CholLee, Seung KuJung, YoungaeYoon, DankyuKim, HyeonjeongKim, SanghyunHwang, Geum-SookWon, Sungho
Issue Date
Aug-2022
Publisher
생화학분자생물학회
Citation
Experimental and Molecular Medicine, v.54, no.8, pp 1125 - 1132
Pages
8
Indexed
SCIE
SCOPUS
KCI
Journal Title
Experimental and Molecular Medicine
Volume
54
Number
8
Start Page
1125
End Page
1132
URI
https://scholarworks.korea.ac.kr/kumedicine/handle/2021.sw.kumedicine/61349
DOI
10.1038/s12276-022-00816-x
ISSN
1226-3613
2092-6413
Abstract
Recent investigations have revealed that the human microbiome plays an essential role in the occurrence of type 2 diabetes (T2D). However, despite the importance of understanding the involvement of the microbiota throughout the body in T2D, most studies have focused specifically on the intestinal microbiota. Extracellular vesicles (EVs) have been recently found to provide important evidence regarding the mechanisms of T2D pathogenesis, as they act as key messengers between intestinal microorganisms and the host. Herein, we explored microorganisms potentially associated with T2D by tracking changes in microbiota-derived EVs from patient urine samples collected three times over four years. Mendelian randomization analysis was conducted to evaluate the causal relationships among microbial organisms, metabolites, and clinical measurements to provide a comprehensive view of how microbiota can influence T2D. We also analyzed EV-derived metagenomic (N = 393), clinical (N = 5032), genomic (N = 8842), and metabolite (N = 574) data from a prospective longitudinal Korean community-based cohort. Our data revealed that GU174097_g, an unclassified Lachnospiraceae, was associated with T2D (β = −189.13; p = 0.00006), and it was associated with the ketone bodies acetoacetate and 3-hydroxybutyrate (r = −0.0938 and −0.0829, respectively; p = 0.0022 and 0.0069, respectively). Furthermore, a causal relationship was identified between acetoacetate and HbA1c levels (β = 0.0002; p = 0.0154). GU174097_g reduced ketone body levels, thus decreasing HbA1c levels and the risk of T2D. Taken together, our findings indicate that GU174097_g may lower the risk of T2D by reducing ketone body levels.
Files in This Item
There are no files associated with this item.
Appears in
Collections
4. Research institute > Institute of Human Genomic study > 1. Journal Articles
2. Clinical Science > Department of Pulmonary, Allergy, and Critical Care Medicine > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seung ku photo

Lee, Seung ku
Research Institute (Institute of Human Genomic study)
Read more

Altmetrics

Total Views & Downloads

BROWSE