Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Role of the Circadian Clock and Effect of Time-Restricted Feeding in Adenine-Induced Chronic Kidney Disease

Authors
Fang, YinaJo, Sang-KyungPark, Soo-JiYang, JihyunKo, Yoon SookLee, Hee YoungOh, Se WonCho, Won YongKim, KyoungmiSon, Gi HoonKim, Myung-Gyu
Issue Date
Jan-2023
Publisher
Nature Publishing Group
Keywords
cell cycle; chronic kidney disease; circadian rhythm; inflammation; timed-restricted feeding
Citation
Laboratory Investigation, v.103, no.1, pp 100008
Indexed
SCIE
SCOPUS
Journal Title
Laboratory Investigation
Volume
103
Number
1
Start Page
100008
URI
https://scholarworks.korea.ac.kr/kumedicine/handle/2021.sw.kumedicine/62573
DOI
10.1016/j.labinv.2022.100008
ISSN
0023-6837
1530-0307
Abstract
Most physiological functions exhibit circadian rhythmicity that is partly regulated by the molec-ular circadian clock. Herein, we investigated the relationship between the circadian clock and chronic kidney disease (CKD). The role of the clock gene in adenine-induced CKD and the mechanisms of interaction were investigated in mice in which Bmal1, the master regulator of the clock gene, was knocked out, and Bmal1 knockout (KO) tubule cells. We also determined whether the renoprotective effect of time-restricted feeding (TRF), a dietary strategy to enhance circadian rhythm, is clock gene-dependent. The mice with CKD showed altered expression of the core clock genes with a loss of diurnal variations in renal functions and key tubular transporter gene expression. Bmal1 KO mice developed more severe fibrosis, and transcriptome profiling followed by gene ontology analysis suggested that genes associated with the cell cycle, inflammation, and fatty acid oxidation pathways were significantly affected in the mutant mice. Tubule-specific deletion of BMAL1 in HK-2 cells by CRISPR/Cas9 led to upregulation of p21 and tumor necrosis a and exacerbated epithelial-mesenchymal transition-related gene expression upon transforming growth factor b stimulation. Finally, TRF in the mice with CKD partially restored the disrupted oscillation of the kidney clock genes, accompanied by improved cell cycle arrest and inflammation, leading to decreased fibrosis. However, the renoprotective effect of TRF was abolished in Bmal1 KO mice, suggesting that TRF is partially dependent on the clock gene. Our data demonstrate that the molecular clock system plays an important role in CKD via cell cycle regulation and inflammation. Understanding the role of the circadian clock in kidney diseases can be a new research field for developing novel therapeutic targets. (c) 2022 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
1. Basic Science > Department of Legal Medicine > 1. Journal Articles
1. Basic Science > Department of Physiology > 1. Journal Articles
2. Clinical Science > Department of Nephrology and Hypertension > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Son, Gi Hoon photo

Son, Gi Hoon
College of Medicine (Department of Forensic Medicine)
Read more

Altmetrics

Total Views & Downloads

BROWSE