Detailed Information

Cited 14 time in webofscience Cited 15 time in scopus
Metadata Downloads

Drugs which inhibit osteoclast function suppress tumor growth through calcium reduction in bone

Authors
Li, XinLiao, JinhuiPark, Serk InKoh, Amy J.Sadler, William D.Pienta, Kenneth J.Rosol, Thomas J.McCauley, Laurie K.
Issue Date
Jun-2011
Publisher
ELSEVIER SCIENCE INC
Keywords
Zoledronic acid (ZA); Osteoprotegrin (OPG); Anti-resorptive; Prostate tumor; Calcium; Bone resorption
Citation
BONE, v.48, no.6, pp 1354 - 1361
Pages
8
Indexed
SCI
SCIE
SCOPUS
Journal Title
BONE
Volume
48
Number
6
Start Page
1354
End Page
1361
URI
https://scholarworks.korea.ac.kr/kumedicine/handle/2020.sw.kumedicine/13447
DOI
10.1016/j.bone.2011.03.687
ISSN
8756-3282
1873-2763
Abstract
Prostate carcinoma frequently metastasizes to bone where the microenvironment facilitates its growth. Inhibition of bone resorption is effective in reducing tumor burden and bone destruction in prostate cancer. However, whether drugs that inhibit osteoclast function inhibit tumor growth independent of inhibition of bone resorption is unclear. Calcium is released during bone resorption and the calcium sensing receptor is an important regulator of cancer cell proliferation. The goal of this investigation was to elucidate the role of calcium released during bone resorption and to determine the impact of drugs which suppress bone resorption on tumor growth in bone. To compare tumor growth in a skeletal versus non-skeletal site, equal numbers of canine prostate cancer cells expressing luciferase (ACE-1(luc)) were inoculated into a simple collagen matrix, neonatal mouse vertebrae (vossicles), human de-proteinized bone, or a mineralized collagen matrix. Implants were placed subcutaneously into athymic mice. Luciferase activity was used to track tumor growth weekly, and at one month tumors were dissected for histologic analysis. Luciferase activity and tumor size were greater in vossicles, de-proteinized bone and mineralized collagen matrix versus non-mineralized collagen implants. The human osteoblastic prostate carcinoma cell line C4-2b also grew better in a mineral rich environment with a greater proliferation of C4-2b cells reflected by Ki-67 staining. Zoledronic acid (ZA), a bisphosphonate, and recombinant OPG-Fc, a RANKL inhibitor, were administered to mice bearing vertebral implants (vossicles) containing ACE-1 osteoblastic prostate cancer cells. Vossicles or collagen matrices were seeded with ACE-1(luc) cells subcutaneously in athymic mice (2 vossicles, 2 collagen implants/mouse). Mice received ZA (5 mu g/mouse, twice/week), (OPG-Fc at 10 mg/kg, 3 times/week) or vehicle, and luciferase activity was measured weekly. Histologic analysis of the tumors, vossicles and endogenous bones and serum biochemistry were performed. Antiresorptive administration was associated with decreased serum TRAP5b, reduced osteoclast numbers, and increased tibia and vossicle bone areas. ZA significantly decreased bone marrow calcium concentrations without affecting serum calcium. ZA and OPG-Fc significantly inhibited tumor growth in bone but not in collagen implants. In conclusion, the inhibitory effects of ZA or OPG-Fc on prostate tumor growth in bone are mediated via blocking bone resorption and calcium release from bone. (C) 2011 Elsevier Inc. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
1. Basic Science > Department of Biochemistry and Molecular Biology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Serk in photo

Park, Serk in
College of Medicine (Department of Biochemistry and Molecular Biology)
Read more

Altmetrics

Total Views & Downloads

BROWSE