Detailed Information

Cited 0 time in webofscience Cited 79 time in scopus
Metadata Downloads

Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes

Authors
Kim K.-A.Chung J.Jung D.-H.Park J.-Y.
Issue Date
2004
Keywords
CYP2C8; CYP3A4; Cytochrome P450 (P450); Human liver microsomes; Loperamide
Citation
European Journal of Clinical Pharmacology, v.60, no.8, pp 575 - 581
Pages
7
Indexed
SCOPUS
Journal Title
European Journal of Clinical Pharmacology
Volume
60
Number
8
Start Page
575
End Page
581
URI
https://scholarworks.korea.ac.kr/kumedicine/handle/2020.sw.kumedicine/20878
DOI
10.1007/s00228-004-0815-3
ISSN
0031-6970
1432-1041
Abstract
Objective: The purpose of the present study was to elucidate the cytochrome P450 (P450) isoform(s) involved in the metabolism of loperamide (LOP) to N-demethylated LOP (DLOP) in human liver microsomes. Methods: Three established approaches were used to identify the P450 isoforms responsible for LOP N-demethylation using human liver microsomes and cDNA-expressed P450 isoforms: (1) correlation of LOP N-demethylation activity with marker P450 activities in a panel of human liver microsomes, (2) inhibition of enzyme activity by P450-selective inhibitors, and (3) measurement of DLOP formation by cDNA-expressed P450 isoforms. The relative contribution of P450 isoforms involved in LOP N-demethylation in human liver microsomes were estimated by applying relative activity factor (RAF) values. Results: The formation rate of DLOP showed biphasic kinetics, suggesting the involvement of multiple P450 isoforms. Apparent Km and Vmax values were 21.1 μM and 122.3 pmol/min per milligram of protein for the high-affinity component and 83.9 μM and 412.0 pmol/ min per milligram of protein for the low-affinity component, respectively. Of the cDNA-expressed P450 s tested, CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyzed LOP N-demethylation. LOP N-demethylation was significantly inhibited when coincubated with quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4 inhibitor) by 40 and 90%, respectively, but other chemical inhibitors tested showed weak or no significant inhibition. DLOP formation was highly correlated with CYP3A4-catalyzed midazolam 1-hydroxylation (rs = 0.829; P < 0.01), CYP2B6-catalzyed 7-ethoxy4- trifluoromethylcoumarin O-deethylation (rs = 0.691; P < 0.05), and CYP2C8-catalyzed paclitaxel 6α-hydroxylation (rs = 0.797; P < 0.05). Conclusion: CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyze LOP N-demethylation in human liver microsomes, and among them, CYP2C8 and CYP3A4 may play a crucial role in LOP metabolism at the therapeutic concentrations of LOP. Coadministration of these P450 inhibitors may cause drug interactions with LOP. However, the clinical significance of potential interaction of LOP metabolism by CYP2C8 and CYP3A4 inhibitors should be studied further. © Springer-Verlag 2004.
Files in This Item
There are no files associated with this item.
Appears in
Collections
2. Clinical Science > Department of Clinical Pharmacology and Toxicology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Ji Young photo

Park, Ji Young
Anam Hospital (Department of Clinical Pharmacology and Toxicology, Anam Hospital)
Read more

Altmetrics

Total Views & Downloads

BROWSE