Detailed Information

Cited 5 time in webofscience Cited 4 time in scopus
Metadata Downloads

Stem Length and Neck Resection on Fixation Strength of Press-Fit Radial Head Prosthesis: An In Vitro Model

Authors
Moon, Jun-GyuShukla, Dave R.Fitzsimmons, James S.An, Kai-NanO'Driscoll, Shawn W.
Issue Date
Dec-2019
Publisher
W. B. Saunders Co., Ltd.
Keywords
Biomechanics; fracture; micromotion; radial head prosthesis; stem length
Citation
Journal of Hand Surgery, v.44, no.12
Indexed
SCIE
SCOPUS
Journal Title
Journal of Hand Surgery
Volume
44
Number
12
URI
https://scholarworks.korea.ac.kr/kumedicine/handle/2020.sw.kumedicine/28484
DOI
10.1016/j.jhsa.2019.03.002
ISSN
0363-5023
1531-6564
Abstract
Purpose Various radial head prosthesis designs are currently in use. Few studies compare different prosthetic designs. We hypothesized that increasing a cementless implant stem’s length would reduce stem–bone micromotion, with both short and long neck cuts. We also hypothesized that a minimum stem length might be required for the initial fixation strength of a press-fit implant. Methods In 16 fresh-frozen cadaveric elbows (8 pairs), the radial head and neck were cut either 10 or 21 mm below the top of the head. Modular cementless stems were inserted and sequentially lengthened in 5-mm increments. Micromotion under eccentric loading was tested after each incremental change. Results Incremental lengthening of the prosthetic stem and the amount of neck resection (10-mm cut vs 21-mm cut) both had a significant effect on micromotion. After a 10-mm radial head–neck resection, we observed a significant decrease in micromotion with stem lengths of 25 mm or greater, whereas with 21 mm of neck resection there was no further reduction in micromotion with increased stem length. These differences can be explained, at least in part, by the concept of the cantilever quotient: the ratio of the head–neck length outside the bone to the total length of the implant. Conclusions The length of the stem affects the initial stability of press-fit radial head prostheses when the level of head and neck resection is at the minimum (ie, 10 mm) for currently available prosthetic designs. At this resection level, stems 25 mm or greater had significantly higher initial stability, but all stem lengths tested had mean micromotion values within the threshold for bone ingrowth. Clinical relevance The length of a radial head prosthetic stem affects the initial stability of press-fit radial head prostheses when the level of head and neck resection is at the minimum (ie, 10 mm) for currently available prosthetic designs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
2. Clinical Science > Department of Orthopedic Surgery > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Moon, Jun Gyu photo

Moon, Jun Gyu
Guro Hospital (Department of Orthopedic Surgery, Guro Hospital)
Read more

Altmetrics

Total Views & Downloads

BROWSE