Detailed Information

Cited 5 time in webofscience Cited 7 time in scopus
Metadata Downloads

GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosisopen access

Authors
Kim, Joo-WonMin, Dong WhaKim, DasomKim, JooheeKim, Min JungLim, HyangsoonLee, Ji-Yun
Issue Date
May-2023
Publisher
Nature Publishing Group
Citation
Scientific Reports, v.13, no.1
Indexed
SCIE
SCOPUS
Journal Title
Scientific Reports
Volume
13
Number
1
URI
https://scholarworks.korea.ac.kr/kumedicine/handle/2021.sw.kumedicine/63534
DOI
10.1038/s41598-023-35978-9
ISSN
2045-2322
Abstract
Ferroptosis can be induced by inhibiting antioxidant enzymes GPX4 or system Xc(-), increased intracellular iron concentrations, and lipid peroxidation. Recently, it has been suggested that ferroptosis can be an effective way to induce cancer cell death, although the specific relevance and mechanism of ferroptosis have not been fully elucidated. Here, we investigated the anticancer effects of ferroptosis inducers erastin and RSL3 on non-small cell lung cancer (NSCLC) cells. RSL3 induced cell death more effectively in NSCLC cells than erastin, with limited cytotoxicity in BEAS-2B normal bronchial epithelial cells. The sensitivity of NSCLC cells to RSL3 induced death was dependent on GPX4 expression levels; the effect of RSL3 was reversed by ferrostatin-1 (a ferroptosis inhibitor) but not by Z-VAD-FMK, chloroquine, bafilomycin A1, or necrostatin-1. RSL3 induced ferroptosis by promoting lipid peroxidation, elevating intracellular LIP concentration and ROS level, and blocking GSH-to-GSSH conversion through the inhibition of GPX4 and induction of Nrf2/HO1. Furthermore, RSL3 induced autophagosomes but disrupted the formation of autolysosomes with lysosomal membrane destabilization. GPX4 knockdown had a similar effect on ferroptosis phenotypes as RSL3. Taken together, RSL3-induced ferroptosis depends on the regulation of GPX4-Nrf2/HO1 in NSCLC cells. These results may be useful in predicting the ferroptosis response in NSCLC as well as drug resistant cancer cells.
Files in This Item
There are no files associated with this item.
Appears in
Collections
1. Basic Science > Department of Pathology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Ji Yun photo

Lee, Ji Yun
College of Medicine (Department of Pathology)
Read more

Altmetrics

Total Views & Downloads

BROWSE