Detailed Information

Cited 3 time in webofscience Cited 7 time in scopus
Metadata Downloads

Factors affecting the cleavage efficiency of the CRISPR-Cas9 system

Full metadata record
DC Field Value Language
dc.contributor.authorJung, Won Jun-
dc.contributor.authorPark, Soo-Ji-
dc.contributor.authorCha, Seongkwang-
dc.contributor.authorKim, Kyoungmi-
dc.date.accessioned2024-03-27T01:30:09Z-
dc.date.available2024-03-27T01:30:09Z-
dc.date.issued2024-12-
dc.identifier.issn1976-8354-
dc.identifier.issn2151-2485-
dc.identifier.urihttps://scholarworks.korea.ac.kr/kumedicine/handle/2021.sw.kumedicine/65789-
dc.description.abstractThe CRISPR-Cas system stands out as a promising genome editing tool due to its cost-effectiveness and time efficiency compared to other methods. This system has tremendous potential for treating various diseases, including genetic disorders and cancer, and promotes therapeutic research for a wide range of genetic diseases. Additionally, the CRISPR-Cas system simplifies the generation of animal models, offering a more accessible alternative to traditional methods. The CRISPR-Cas9 system can be used to cleave target DNA strands that need to be corrected, causing double-strand breaks (DSBs). DNA with DSBs can then be recovered by the DNA repair pathway that the CRISPR-Cas9 system uses to edit target gene sequences. High cleavage efficiency of the CRISPR-Cas9 system is thus imperative for effective gene editing. Herein, we explore several factors affecting the cleavage efficiency of the CRISPR-Cas9 system. These factors include the GC content of the protospacer-adjacent motif (PAM) proximal and distal regions, single-guide RNA (sgRNA) properties, and chromatin state. These considerations contribute to the efficiency of genome editing.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisher한국통합생물학회-
dc.titleFactors affecting the cleavage efficiency of the CRISPR-Cas9 system-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1080/19768354.2024.2322054-
dc.identifier.scopusid2-s2.0-85186444734-
dc.identifier.wosid001177052400001-
dc.identifier.bibliographicCitationAnimal Cells and Systems, v.28, no.1, pp 75 - 83-
dc.citation.titleAnimal Cells and Systems-
dc.citation.volume28-
dc.citation.number1-
dc.citation.startPage75-
dc.citation.endPage83-
dc.type.docTypeReview-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaCell Biology-
dc.relation.journalResearchAreaZoology-
dc.relation.journalWebOfScienceCategoryCell Biology-
dc.relation.journalWebOfScienceCategoryZoology-
dc.subject.keywordPlusSTRAND BREAK REPAIR-
dc.subject.keywordPlusGENOME MODIFICATION-
dc.subject.keywordPlusIMMUNE-SYSTEM-
dc.subject.keywordPlusCRISPR/CAS9-
dc.subject.keywordPlusCAS9-
dc.subject.keywordPlusNUCLEASES-
dc.subject.keywordPlusTOOL-
dc.subject.keywordAuthorCRISPR-Cas9 system-
dc.subject.keywordAuthorgenome editing-
dc.subject.keywordAuthorcleavage efficiency-
dc.subject.keywordAuthorsgRNA-
dc.subject.keywordAuthorchromatin state-
Files in This Item
There are no files associated with this item.
Appears in
Collections
3. Graduate School > Graduate School > 1. Journal Articles
1. Basic Science > Department of Physiology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE